
cis32-ai — lecture # 22 — wed-26-apr-2006

today’s topics:

• partial-order planning

• decision-theoretic planning

cis32-spring2006-sklar-lec22 1

Partial Order Planning

• The answer to the problem we ended the last lecture with is to use partial order planning.

• Basically this gives us a way of checking before adding an action to the plan that it

doesn’t mess up the rest of the plan.

• The problem is that in this recursive process, we don’t know what the rest of the plan is.

• Need a new representation partially ordered plans.

cis32-spring2006-sklar-lec22 2

Representation

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Finish

Finish

Start

LeftShoeOn, RightShoeOn

cis32-spring2006-sklar-lec22 3

Partially ordered plans

• Partially ordered collection of steps with

– Start step has the initial state description as its effect

– Finish step has the goal description as its precondition

– causal links from outcome of one step to precondition of another

– temporal ordering between pairs of steps

• Open condition = precondition of a step not yet causally linked

• A plan is complete iff every precondition is achieved

• A precondition is achieved iff it is the effect of an earlier step and no possibly intervening

step undoes it

cis32-spring2006-sklar-lec22 4

Plan construction

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

cis32-spring2006-sklar-lec22 5

Plan construction (2)

Buy(Drill)

Buy(Milk)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM)

Sells(HWS,Drill)At(HWS)

At(x)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)

cis32-spring2006-sklar-lec22 6

Plan construction (3)

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)

cis32-spring2006-sklar-lec22 7

Planning process

• Operators on partial plans:

– add a link from an existing action to an open condition

– add a step to fulfill an open condition

– order one step wrt another to remove possible conflicts

• Gradually move from incomplete/vague plans to complete, correct plans

• Backtrack if an open condition is unachievable or if a conflict is unresolvable

cis32-spring2006-sklar-lec22 8

POP algorithm

function POP (initial, goal, operators) returns plan

plan ← MAKE-MINIMAL-PLAN(initial,goal)

loop do

if SOLUTION?(plan) then return plan

Sneed, c← SELECT-SUBGOAL(plan)

CHOOSE-OPERATOR(plan,operators,Sneed, c)

RESOLVE-THREATS(plan)

end loop

end function

function SELECT-SUBGOAL(plan) returns Sneed, c

pick a plan step Sneed from STEPS(plan)

with a precondition c that has not been achieved

return Sneed, c

end function

cis32-spring2006-sklar-lec22 9

POP algorithm, continued

procedure CHOOSE-OPERATOR(plan,operators,Sneed, c)

choose a step Sadd from operators or STEPS(plan) that has c as an effect

if there is no such step then fail add the causal link Sadd ←
c Sneed to LINKS(plan)

add the ordering constraint Sadd ≺ Sneed to ORDERINGS(plan)

if Sadd is a newly added step from operators then

add Sadd to STEPS(plan)

add Start ≺ Sadd ≺ Finish to ORDERINGS(plan)

end if

end procedure

cis32-spring2006-sklar-lec22 10

POP algorithm, continued

procedure RESOLVE-THREATS(plan)

for each Sthreat that threatens a link Si ←
c Sj in LINKS(plan) do

choose either

Demotion: Add Sthreat ≺ Si to ORDERINGS(plan)

Promotion: Add Sj ≺ Sthreat to ORDERINGS(plan)

if not CONSISTENT(plan) then fail

end for each

end procedure

cis32-spring2006-sklar-lec22 11

Clobbering

• A clobberer is a potentially intervening step that destroys the condition achieved by a

causal link. E.g., Go(Home) clobbers At(Supermarket):

Finish

At(Home)

At(Home)

Go(Home)

DEMOTION

PROMOTION

Go(Supermarket)

At(Supermarket)

Buy(Milk)

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)

cis32-spring2006-sklar-lec22 12

Properties of POP

• Nondeterministic algorithm: backtracks at choice points on failure:

– choice of Sadd to achieve Sneed

– choice of demotion or promotion for clobberer

– selection of Sneed is irrevocable

• POP is sound, complete, and systematic (no repetition)

• Extensions for disjunction, universals, negation, conditionals

• Can be made efficient with good heuristics derived from problem description

• Particularly good for problems with many loosely related subgoals

cis32-spring2006-sklar-lec22 13

Example

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y)
 Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem

cis32-spring2006-sklar-lec22 14

Example (2)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

cis32-spring2006-sklar-lec22 15

Example (3)

B A

C

A

B

CFINISH

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)

cis32-spring2006-sklar-lec22 16

Example (4)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)

cis32-spring2006-sklar-lec22 17

Example (5)

B A

C

A

B

CFINISH

On(A,B) On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
 PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)

cis32-spring2006-sklar-lec22 18

Decision-theoretic planning

• Closed loop planning

• The central question in designing an agent is building it so that it can figure out what to

do next.

• That is finding a set of actions which will lead to a goal.

• Previously we studied a traditional approach to planning from AI.

• This was the use of means-ends analysis along with the STRIPS representation.

cis32-spring2006-sklar-lec22 19

• STRIPS:

– add condition;

– delete condition; and

– precondition.

• Algorithms use:

– Use precondition to decompose goals;

– Use add condition to select actions; and

– Use delete condition to constrain order on actions.

cis32-spring2006-sklar-lec22 20

• The main limitations of this approach are:

– Efficiency (doesn’t scale)

– Robustness

• The second of these is what interests us here.

• The problem is:

– Plan is linear

– Planning is separated from acting

– Actions are non-deterministic

• Though partial-order planning is an improvement on simple means-ends analysis, it still

can’t cope with non-determinism.

cis32-spring2006-sklar-lec22 21

• One way of thinking about this is in terms of closed loop planning.

• Classical planning has:

PlanAgentWorld

perception planning action

?
• While close loop planning has actions which are dependent on what is observed in the

world:

PlanAgentWorld

perception planning

action

• Clearly this is the kind of planning that better fits agents.

cis32-spring2006-sklar-lec22 22

• Conditional planning is one approach to closed-loop planning.

• Conditional plans are allowed to have branches and loops where control choices depend

upon observations.

• For example:

1. pick up block A

2. while block A not held

pick up block A.

3. if block C clear

put block A on block C.

4. else clear block C.

• However, the situation gets more complex with unreliable sensors.

cis32-spring2006-sklar-lec22 23

• To deal with unreliable sensors we need to bring in decision theory.

• (Just as we did to take account of dice rolls in game playing).

• A problem with using classical decision theory in the context of intelligent agents is that it

is a one-shot process.

• The process only takes into account the current state and the one the decision will lead to.

• This is fine if the next state is the goal state.

• In contrast, what we are often interested in is determining a sequence of actions which

take us through a series of states, especially when the choice of actions varies from state

to state.

cis32-spring2006-sklar-lec22 24

• We do this through the use of decision theoretic planning models.

• We will cover two closely related types of these models here:

– Markov decision processes.

– Partially observable Markov decision processes.

• Both are close in many ways to the kind of search models we studied earlier.

• The big change is that actions can have more than one outcome.

• So we start by considering planning as search.

cis32-spring2006-sklar-lec22 25

Planning as search

• The earliest search models we looked at are a form of planning.

• In the sheep and dogs example, a solution was:

– A sequence of actions;

– Which led to a goal

• This is just a plan.

• Adding in a heuristic function gives us an idea of optimality:

• An optimal plan is:

– A sequence of actions;

– Which leads to a goal;

– With minimum cost.

cis32-spring2006-sklar-lec22 26

• We can describe a state space search model as:

– a state space S;

– an initial state s0;

– a set of actions, A(s) ⊆ A, applicable in each state s ∈ S;

– transition function f(s, a) for s ∈ S and a ∈ A;

– action costs c(a, s) > 0; and

– a set of goal states G ⊆ S

cis32-spring2006-sklar-lec22 27

• This gives us a problem space that looks like:

• A solution is a path through this space from initial state to a goal state.

cis32-spring2006-sklar-lec22 28

• There are lots of ways of searching this space.

• One simple way is greedy search:

1. Evaluate each action a which can be performed in the current state:

Q(a, s) = c(a, s) + h(sa)

where sa is the next state.

2. Apply action a that minimises Q(a, s);

3. If sa is the goal, exit

else s := sa, goto 1.

• This just picks the cheapest move at each point.

cis32-spring2006-sklar-lec22 29

• This is a simple approach that uses little (and constant) memory.

• It can be easily adapted to give a closed-loop version:

– Instead of sa being the state we expect to get, make it the one we observe.

• Like any depth first approach, it isn’t optimal.

• It might not even find solutions.

• (But we know how to use learning to ensure that it gets better over time).

cis32-spring2006-sklar-lec22 30

Markov decision processes

• So far, there is nothing really new here.

• But it is only a small step to a much better representation.

• In a non-deterministic environment, we don’t have a simple transition function.

• Instead an action can lead to one of a number of states.

• When we can tell which state we are in, then we have a Markov decision process (MDP)

cis32-spring2006-sklar-lec22 31

• An MDP has the following formal model:

– a state space S;

– a set of actions, A(s) ⊆ A, applicable in each state s ∈ S;

– transition probabilities Pra(s
′ | s) for s, s′ ∈ S and a ∈ A;

– action costs c(a, s) > 0; and

– a set of goal states G ⊆ S

• Thus for each state we have a set of actions we can apply, and these take us to other

states with some probability.

• We don’t know which state we will end up in, but we know which one we are in after the

action (we have full observability).

cis32-spring2006-sklar-lec22 32

• This gives us a problem space that looks like:

• A solution is now choice of action in every possible state that the agent might end up in.

cis32-spring2006-sklar-lec22 33

• We can think of this solution as a function π which maps states into applicable actions,

π(si) = ai.

• This function is called a policy.

• What a policy allows us to compute is a probability distribution across all the trajectories

from a given initial state.

• This is the product of all the transition probabilities, Prai
(si+1 | si), along the trajectory.

• Goal states are taken to have no cost, no effects, so that if s ∈ G:

– c(a, s) = 0

– Pr(s | s) = 1

cis32-spring2006-sklar-lec22 34

• We can then calculate the expected cost of a policy starting in state s0.

• This is just the probability of the policy multiplied by the cost of traversing it:
∞∑

i=0

c(π(si), si)

• An optimal policy is then a π∗ that has minimum expected cost for all states s.

• As with the search version of the problem, we can solve this by searching, albeit through a

much larger space.

• Later we will look at ways to do this search.

cis32-spring2006-sklar-lec22 35

Partially observable MDPs

• Full observability is a big assumption (it requires an accessible environment). Much more

likely is partial observability.

• This means that we don’t know what state we are in, but instead we have some set of

beliefs about which state we are in.

• We represent these beliefs by a probability distribution over the set of possible states.

• These probabilities are obtained by making observations.

• The effect of observations are modelled as probabilities Pra(o | s), where o are

observations.

cis32-spring2006-sklar-lec22 36

• Formally a POMDP is:

– a state space S;

– a set of actions, A(s) ⊆ A, applicable in each state s ∈ S;

– transition probabilities Pra(s
′ | s) for s, s′ ∈ S and a ∈ A;

– action costs c(a, s) > 0;

– a set of goal states, G;

– an initial belief state b0;

– a set of final belief states bF ;

– observations o after action a with probabilities Pra(o | s)

cis32-spring2006-sklar-lec22 37

• So we have a situation which looks like:

• This is just an MDP over belief states.

cis32-spring2006-sklar-lec22 38

• The goal states of an MDP are just replaced by, for example, states in which we are pretty

sure we have reached a goal:
∑

s∈G
b(s) > 1− ǫ

• We solve a POMDP by looking for a function which maps belief states into actions, where

belief states b are probability distributions over the set of states S.

• Given a belief state b, the effect of carrying out action a is:

ba(s) =
∑

s′∈S
Pr
a

(s | s′)b(s′)

cis32-spring2006-sklar-lec22 39

• If we carry out a in b and then observe o, we get to state bo
a:

bo
a(s) =

Pra(o | s)ba(s)
∑

s′∈S Pra(o | s′)ba(s′)

• The term on the bottom is the probability of observing o after doing a in b.

• Thus actions map between belief states with probability:

ba(o) =
∑

s′∈S
Pr
a

(o | s′)ba(s
′)

and we want to find a trajectory from b0 to bF at minimum cost.

cis32-spring2006-sklar-lec22 40

Summary

• This lecture has looked at two more advanced approaches to planning:

– partial order planning

– decision theoretic planning

• partial order planning requires a new way of looking at the world, but the payoff is a more

robust approach.

• we also looked at the POP algorithm, . . .

• . . . and saw how it could solve the Sussman anomaly.

• Starting from the notion of planning as search, we introduced the Markov decision process

(MDP) representation.

• A solution to an MDP is a policy, a choice of what action to take in every state.

cis32-spring2006-sklar-lec22 41

