cis32-ai — lecture # 22 — wed-26-apr-2006

today'’s topics:
e partial-order planning

e decision-theoretic planning

cis32-spring2006-sklar-lec22 1

Partial Order Planning

e The answer to the problem we ended the last lecture with is to use partial order planning.

e Basically this gives us a way of checking before adding an action to the plan that it
doesn’t mess up the rest of the plan.

e The problem is that in this recursive process, we don't know what the rest of the plan is.

e Need a new representation partially ordered plans.

cis32-spring2006-sklar-lec22 2

Representation

Start
Start Left Right
Sock Sock
LeftShoeOn, ¢ RightShoeOn LeftSockOn RightSockon
Left Right
Finish Shoe Shoe

LeftShoeOn, RightShoeOn

Finish

cis32-spring2006-sklar-lec22 3

Partially ordered plans

e Partially ordered collection of steps with

— Start step has the initial state description as its effect
— Finish step has the goal description as its precondition
— causal links from outcome of one step to precondition of another

— temporal ordering between pairs of steps
e Open condition = precondition of a step not yet causally linked
e A plan is complete iff every precondition is achieved

e A precondition is achieved iff it is the effect of an earlier step and no possibly intervening
step undoes it

cis32-spring2006-sklar-lec22 4

Plan construction

Start

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Finish

cis32-spring2006-sklar-lec22 5

cis32-spring2006-sklar-lec22

Plan construction (2)

Start

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(HWS) Sells(HWS, Drill)

Buy(Drill)

At(x)

Go(SM)

At(SM) Sells(SM,Milk)

Buy(Milk)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Finish

Plan construction (3)

Start

At(Home)

Go(HWS)

At(HWS) Sells(HWS, Drill)

Buy(Drill)

At(HWS)

Go(SM)

>
At(SM) Sells(SM,Milk) | AtSM) Selis(SM,Ban.)

Buy(Milk) Buy(Ban.)

]
AL(SM)

Go(Home)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Finish

cis32-spring2006-sklar-lec22 7

Planning process

e Operators on partial plans:

— add a link from an existing action to an open condition
— add a step to fulfill an open condition

— order one step wrt another to remove possible conflicts
e Gradually move from incomplete/vague plans to complete, correct plans

e Backtrack if an open condition is unachievable or if a conflict is unresolvable

cis32-spring2006-sklar-lec22 8

POP algorithm

function POP (initial, goal, operators) returns plan
plan «— MAKE-MINIMAL-PLAN(initial,goal)
loop do
if SOLUTION?(plan) then return plan
Sheed, ¢ < SELECT-SUBGOAL(plan)
CHOOSE-OPERATOR(plan,operators,Syeed, ¢)
RESOLVE-THREATS(plan)
end loop
end function

function SELECT-SUBGOAL(plan) returns Sceq, €
pick a plan step S,ccq from STEPS(plan)
with a precondition c that has not been achieved
return Sy,ced, C
end function

cis32-spring2006-sklar-lec22 9

POP algorithm, continued

procedure CHOOSE-OPERATOR(plan,operators,Syeed, ¢)
choose a step S,4q from operators or STEPS(plan) that has ¢ as an effect
if there is no such step then fail add the causal link S,4q < Syecq to LINKS(plan)
add the ordering constraint Syq < Speea to ORDERINGS(plan)
if Suqq is a newly added step from operators then
add S, to STEPS(p/an)
add Start < S,qq < Finish to ORDERINGS(plan)
end if
end procedure

cis32-spring2006-sklar-lec22 10

POP algorithm, continued

procedure RESOLVE-THREATS(plan)
for each Sypyeqr that threatens a link S; < S} in LINKS(plan) do
choose either
Demotion: Add Sipreqt < S; to ORDERINGS(plan)
Promotion: Add S; < Siprear to ORDERINGS(plan)
if not CONSISTENT (plan) then fail
end for each
end procedure

cis32-spring2006-sklar-lec22 11

Clobbering

e A clobberer is a potentially intervening step that destroys the condition achieved by a
causal link. E.g., Go(Home) clobbers At(Supermarket):

— —

- = jon:
y . DEMOTION Demotion: put before Go(Supermarket)
Go(Supermarket) \|
l
\
N
-| Go(Home)
=
/ At(Home)
/ . .
AlSupermarket) Promotion: put after Buy(Milk)
Buy(Milk) |
\ /
~_ 7
PROMOTION AtHOme)
Finish

cis32-spring2006-sklar-lec22

12

Properties of POP

e Nondeterministic algorithm: backtracks at choice points on failure:

— choice of S,y to achieve S,,..q
— choice of demotion or promotion for clobberer

— selection of S,,..4 is irrevocable
e POP is sound, complete, and systematic (no repetition)
e Extensions for disjunction, universals, negation, conditionals
e Can be made efficient with good heuristics derived from problem description

e Particularly good for problems with many loosely related subgoals

cis32-spring2006-sklar-lec22 13

Example

"Sussman anomaly" problem A

C B

A c
LI LI

Start State Goal State
Clear(x) On(x,z) Clear(y) Clear(x) On(x,z)
PutOn(x,y) PutOnTable(x)
~0n(x,z) ~Clear(y) ~0On(x,z) Clear(z) On(x,Table)

Clear(z) On(x,y)

+ several inequality constraints

cis32-spring2006-sklar-lec22 14

Example (2)

START E
On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)
On(A,B) On(B,C)
FINISH

cis32-spring2006-sklar-lec22 15

Example (3)

START E
On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)
CIaB) Ona&z) CIEC)
PutOn(B,C)
)‘/
On(A,B) On(B,C)
B
FINISH

cis32-spring2006-sklar-lec22 16

Example (4)

START

CI(A) On{A,z) CI{B)

PutOn(A,B)

\

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

\\

cﬁa) On(B 2) CI(C)

Puton(B,C)

/

On?A,B) On(L{C)

FINISH

cis32-spring2006-sklar-lec22

PutOn(A,B)

clobbers CI(B)

=> order after
PutOn(B,C)

of=]>

17

Example (5)

START

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

//

Y 4 -
On(C,z) CI(C)

PutOnTable(C)

N |

cith) On(,X,z) CI(I¥)

PutOn(A,B)

\

CIaB) Ona?a,z) CIEC)

i Puton(B,C)

/

On?A,B) On(L{C)

FINISH

cis32-spring2006-sklar-lec22

Bl[A]

PutOn(A,B)

clobbers CI(B)

=> order after
PutOn(B,C)

PutOn(B,C)
clobbers CI(C)
=> order after
PutOnTable(C)

of=]>

18

Decision-theoretic planning

e Closed loop planning

e The central question in designing an agent is building it so that it can figure out what to
do next.

e That is finding a set of actions which will lead to a goal.
e Previously we studied a traditional approach to planning from Al.

e This was the use of means-ends analysis along with the STRIPS representation.

cis32-spring2006-sklar-lec22 19

e STRIPS:

— add condition;
— delete condition; and

— precondition.
e Algorithms use:

— Use precondition to decompose goals;
— Use add condition to select actions; and

— Use delete condition to constrain order on actions.

cis32-spring2006-sklar-lec22 20

e The main limitations of this approach are:

— Efficiency (doesn't scale)

— Robustness
e [he second of these is what interests us here.
e The problem is:

— Plan is linear
— Planning is separated from acting
— Actions are non-deterministic

e Though partial-order planning is an improvement on simple means-ends analysis, it still
can't cope with non-determinism.

cis32-spring2006-sklar-lec22 21

e One way of thinking about this is in terms of closed loop planning.

e Classical planning has:

perception planning action
(wora }———+{ Agent | (P)= 7
Worl g (Pl :

e While close loop planning has actions which are dependent on what is observed in the

world:

perception planning

World = Agent —»

action

e Clearly this is the kind of planning that better fits agents.

cis32-spring2006-sklar-lec22 22

e Conditional planning is one approach to closed-loop planning.

e Conditional plans are allowed to have branches and loops where control choices depend
upon observations.

e For example:

1. pick up block A

2. while block A not held
pick up block A.

3. if block C' clear
put block A on block C'.

4. else clear block C.

e However, the situation gets more complex with unreliable sensors.

cis32-spring2006-sklar-lec22 23

e To deal with unreliable sensors we need to bring in decision theory.
e (Just as we did to take account of dice rolls in game playing).

e A problem with using classical decision theory in the context of intelligent agents is that it
is a one-shot process.

e The process only takes into account the current state and the one the decision will lead to.
e This is fine if the next state is the goal state.

e In contrast, what we are often interested in is determining a sequence of actions which
take us through a series of states, especially when the choice of actions varies from state
to state.

cis32-spring2006-sklar-lec22 24

e We do this through the use of decision theoretic planning models.
e We will cover two closely related types of these models here:

— Markov decision processes.

— Partially observable Markov decision processes.
e Both are close in many ways to the kind of search models we studied earlier.
e The big change is that actions can have more than one outcome.

e So we start by considering planning as search.

cis32-spring2006-sklar-lec22 25

Planning as search

e The earliest search models we looked at are a form of planning.
e In the sheep and dogs example, a solution was:

— A sequence of actions;

— Which led to a goal
e This is just a plan.
e Adding in a heuristic function gives us an idea of optimality:
e An optimal plan is:

— A sequence of actions;
— Which leads to a goal;

— With minimum cost.

cis32-spring2006-sklar-lec22 26

e \We can describe a state space search model as:

— a state space 5

— an initial state sg;

— a set of actions, A(s) C A, applicable in each state s € S
— transition function f(s,a) for s € S and a € A;

— action costs ¢(a, s) > 0; and

— a set of goal states G C S

cis32-spring2006-sklar-lec22 27

e This gives us a problem space that looks like:

D
ARG
" O

e A solution is a path through this space from initial state to a goal state.

cis32-spring2006-sklar-lec22 28

e There are lots of ways of searching this space.
e One simple way is greedy search:
1. Evaluate each action a which can be performed in the current state:
Q(a,s) = cla, s) + h(s,)
where s, is the next state.

2. Apply action a that minimises Q(a, s);

3. If s, is the goal, exit
else s .= s,, goto 1.

e This just picks the cheapest move at each point.

cis32-spring2006-sklar-lec22 29

e This is a simple approach that uses little (and constant) memory.
e It can be easily adapted to give a closed-loop version:
— Instead of s, being the state we expect to get, make it the one we observe.
e Like any depth first approach, it isn't optimal.
e It might not even find solutions.

e (But we know how to use learning to ensure that it gets better over time).

cis32-spring2006-sklar-lec22 30

Markov decision processes

e So far, there is nothing really new here.

e But it is only a small step to a much better representation.

e In a non-deterministic environment, we don't have a simple transition function.
e Instead an action can lead to one of a number of states.

e When we can tell which state we are in, then we have a Markov decision process (MDP)

cis32-spring2006-sklar-lec22 31

e An MDP has the following formal model:

— a state space 5

— a set of actions, A(s) C A, applicable in each state s € S
— transition probabilities Pr (s’ | s) for s,s" € S and a € A;
— action costs ¢(a, s) > 0; and

— a set of goal states G C S

e Thus for each state we have a set of actions we can apply, and these take us to other
states with some probability.

e We don’t know which state we will end up in, but we know which one we are in after the
action (we have full observability).

cis32-spring2006-sklar-lec22 32

e This gives us a problem space that looks like:

-,

»

O

e A solution is now choice of action in every possible state that the agent might end up in.

cis32-spring2006-sklar-lec22 33

e We can think of this solution as a function 7 which maps states into applicable actions,
W(Si) = Qa;.

e This function is called a policy.

e What a policy allows us to compute is a probability distribution across all the trajectories
from a given initial state.

e This is the product of all the transition probabilities, Pr, (s, | s;), along the trajectory.
e Goal states are taken to have no cost, no effects, so that if s € GG:

—c(a,s) =0

—Pr(s | s)

I
|

cis32-spring2006-sklar-lec22 34

e We can then calculate the expected cost of a policy starting in state s.

e This is just the probability of the policy multiplied by the cost of traversing it:

(0.9)
> c(m(si), i)
i=0
e An optimal policy is then a 7* that has minimum expected cost for all states s.

e As with the search version of the problem, we can solve this by searching, albeit through a
much larger space.

e Later we will look at ways to do this search.

cis32-spring2006-sklar-lec22 35

Partially observable MDPs

e Full observability is a big assumption (it requires an accessible environment). Much more
likely is partial observability.

e This means that we don't know what state we are in, but instead we have some set of
beliefs about which state we are in.

e We represent these beliefs by a probability distribution over the set of possible states.
e These probabilities are obtained by making observations.

e The effect of observations are modelled as probabilities Pr,(o | s), where o are
observations.

cis32-spring2006-sklar-lec22 36

e Formally a POMDP is:

— a state space 5,

— a set of actions, A(s) C A, applicable in each state s € S
— transition probabilities Pr (s’ | s) for s,s" € S and a € A;
— action costs c(a, s) > 0;

— a set of goal states, G;

— an initial belief state by;

— a set of final belief states bp;

— observations o after action a with probabilities Pr,(o | s)

cis32-spring2006-sklar-lec22 37

e So we have a situation which looks like:

J

,

)

-

O

2
@

e This is just an MDP over belief states.

cis32-spring2006-sklar-lec22

0

38

e The goal states of an MDP are just replaced by, for example, states in which we are pretty
sure we have reached a goal:

> b(s) >1—¢
seG

e We solve a POMDP by looking for a function which maps belief states into actions, where
belief states b are probability distributions over the set of states S.

e Given a belief state b, the effect of carrying out action a is:

ba(s) = X Pr(s|s")b(s)

s'eS

cis32-spring2006-sklar-lec22 39

e If we carry out a in b and then observe o, we get to state 07:

o v Pry(o] s)ba(s)
bals) = Sves Pra(o | 8')ba(s)

e The term on the bottom is the probability of observing o after doing a in b.

e Thus actions map between belief states with probability:

ba(0) = X Pr(o] s")ba(s")

s'eS

and we want to find a trajectory from by to by at minimum cost.

cis32-spring2006-sklar-lec22 40

Summary

e This lecture has looked at two more advanced approaches to planning:

— partial order planning

— decision theoretic planning

e partial order planning requires a new way of looking at the world, but the payoff is a more
robust approach.

e we also looked at the POP algorithm, ...
e ...and saw how it could solve the Sussman anomaly.

e Starting from the notion of planning as search, we introduced the Markov decision process
(MDP) representation.

e A solution to an MDP is a policy, a choice of what action to take in every state.

cis32-spring2006-sklar-lec22 41

