
cis32-ai — lecture # 3 — mon-6-feb-2006

today’s topics:

• simple agents

• behavior-based AI

cis32-spring2006-sklar-lec3 1



Behavior-based AI

We can distinguish two approaches to AI:

• Classic AI:

– Symbolic representations;

– “Good Old Fashioned AI” (GOFAI).

• Behavior-based AI:

– Representation-free;

– “Nouvelle AI”.

cis32-spring2006-sklar-lec3 2



Classical models are deliberative. They involve what we recognise as thinking.

• Sense-Plan-Act:

– Sense the world and figure out where we are;

– Generate a plan to get where we want to go;

– Translate plan into actions.

• Iterate until goals are achieved.

• Need some kind of world model, notion of goal etc.

cis32-spring2006-sklar-lec3 3



Hypothesis is:

• Most activity isn’t planned out; it is just reaction.

• Complex behaviors are just combinations of simple behaviors.

– If we can string together enough simple behaviors we will get complex behavior.

• Can get further with this “bottom-up” approach than with the classical approach.

– An artificial cockroach that works is better than an artificial human that doesn’t.

• Elephants don’t play chess.

cis32-spring2006-sklar-lec3 4



Example

Boundary

Solid
object

The robot senses whether
the eight surrounding cells
are free for it to occupy

A robot starting here will
go clockwise around the
inside of the outer boundary

A robot starting here will go
counterclockwise around the
outside boundary of the object

s1 s2 s3

s8 s4

s7 s6 s5

© 1998 Morgan Kaufmann Publishers

cis32-spring2006-sklar-lec3 5



• Task:

– Go to a cell adjacent to a boundary or object and follow its perimeter.

• Sensors:

– Can sense if adjacent cells are occupied.

– Each si has value 0 when that cell can be occupied. 1 otherwise.

• Thus at X, the sensors have value:

(0, 0, 0, 0, 0, 0, 1, 0)

• In general we write S = (s1, s2, s3, s4, s5, s6, s7, s8)

cis32-spring2006-sklar-lec3 6



• Actions:

– north move up in grid.

– east move right in grid.

– south move down in grid.

– west move left in grid.

• We write the set of all actions as A.

• These work provided the cell into which the robot tries to move is free.

• The task is then to come up with a function from a set of si to some action:

f : S 7→ A

cis32-spring2006-sklar-lec3 7



Perception & Action

In general, the situation is:

Perceptual
processing

Action
function

Sensory
input Action

Feature
vector,X

Next to wall

In a corner

Designer’s intended
meanings:

0
1
1

1
1

© 1998 Morgan Kaufmann Publishers

Features can be numerical, categorical, or binary-valued.

cis32-spring2006-sklar-lec3 8



• The split between action and perception is arbitrary.

• Could make everything perception or everything action.

• The split is driven by the feature vector (just change the action function to get a different

behavior).

• Once the split is decided, we have to:

– Map sensor data to feature vector;

– Map feature vector to actions.

• Thus we have split the function f above into:

g : S 7→ X

and

h : X 7→ A

cis32-spring2006-sklar-lec3 9



• There are 256 different feature vectors.

• For boundary following, the following are the interesting cases:

x1 x2 x3 x4

In each diagram, the indicated feature has value 1 if and only if at least one of the shaded 
cells is not free.

© 1998 Morgan Kaufman Publishers

• We can then define the feature vector in terms of xi.

• This gives us a way of defining g.

• Of course, in real life, identifying features is not so easy. . .

cis32-spring2006-sklar-lec3 10



• Now we have to define h.

• If all the xi are 0, then the robot can move in any direction.

• We will make it go north if this is the case.

• Otherwise there is a boundary to follow.

• We follow it by:

– If x1 = 1 and x2 = 0 then east

– If x2 = 1 and x3 = 0 then south

– If x3 = 1 and x4 = 0 then west

– If x4 = 1 and x1 = 0 then north

cis32-spring2006-sklar-lec3 11



• We can write these conditions as Boolean expressions.

• The condition for the robot to move east is:

x1.x2

• And the condition for it to move north is:

x1.x2.x3.x4 + x4.x1

• We can also express the xi as Boolean combinations of the sensor signals:

x4 = s1 + s8

cis32-spring2006-sklar-lec3 12



Production systems

• How do we represent the action function?

• One convenient representation is as a production system, a collection of production rules.

• Each rule is written as:

ci → ai

with a condition part and an action part.

• A production system is a list of such rules:

c1 → a1

c2 → a2

...

cn → an

cis32-spring2006-sklar-lec3 13



• The condition can be any binary-valued function of the appropriate feature vector.

• For our example it is just a simple Boolean function.

• To select an action, we look through the rules until we find a ci which evaluates to 1.

• Then we execute the associated ai.

• The ai can be a primitive action, a set of actions, or a call to another production system.

• Usually the last rule in the system has condition 1 (ie. it is an “else” production).

cis32-spring2006-sklar-lec3 14



• Thus, for our example, we could have the production system:

x4x1 → north

x3x4 → west

x2x3 → south

x1x2 → east

1 → north

• This system will then run forever.

• It is what we call a durative procedure.

cis32-spring2006-sklar-lec3 15



• Another kind of production system will have an overall goal.

• Imagine that we want the robot to follow the boundary until it finds a north-east corner

(like the top-left corner in the example) and then stop there.

• We can define another item in the feature vector:

x5 = s1s2s3s4s5s6s7s8

and then write the production system:

x5 → nil

1 → b−f

where nil is an action which does nothing, and b-f is a call to the previous production

system.

cis32-spring2006-sklar-lec3 16



• There are three points to make about this.

• First, in goal-achieving production systems, the topmost rule identifies the situation we are

aiming for.

• Once this is acheived, we need do nothing more.

• Second, conditions and actions lower down the production system lead towards the

achievement of the topmost condition.

• Indeed, action ai is intended to bring about cj where j < i.

• Third, we can build up a hierarchy of production systems, where systems lower in the

hierarchy move the robot towards meeting the conditions of productions in systems higher

up.

• This gives us a means of procedural abstraction.

cis32-spring2006-sklar-lec3 17



• Systems of rules like this are call teleo-reactive (T-R) programs.

• Every action in a T-R program works towards the achievement of a condition higher in the

program.

• It is typically easy to write such programs.

• T-R programs are also very robust.

• Even in the face of faulty sensor readings, carefully constructed T-R programs will get

back on track.

cis32-spring2006-sklar-lec3 18



Subsumption Architecture

• Another approach to combining simple sensory-driven behavior:

Perception

Sensory
signals

Action computation

XPerception Action computation

Corridor traveling

XPerception Action computation

Obstacle avoidance

XPerception Action computation
Action

Wandering

© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lec3 19



• Each module receives sensory information directly from the world.

• If the sensory inputs match the preconditions of a module, it executes.

• Modules can subsume each other (in the picture upper modules can subsume lower ones).

• When module i subsumes j, then if i’s precondition is met, the program of i replaces that

of j.

• So in the example:

– The robot wanders until it has to avoid an obstacle;

– Avoids an obstacle until it is travelling in a corridor.

cis32-spring2006-sklar-lec3 20



• Subsumption architecture started with Brooks.

• Idea is that:

– Build basic behavior;

– When that is refined, add a subsuming behavior;

– When that is refined, add another;

– . . .

• So far as I know, the maximum “stack height” is not *that* high.

• However, there are other ways of making the approach more sophisticated.

cis32-spring2006-sklar-lec3 21



• We can make the approach more flexible:

– Rather than having a fixed set of behaviors, construct a task specific set.

– (Plan, but in terms of behaviors not actions.)

• We can improve on subsumption.

– Rather than having one behavior replace another, merge behaviors.

– (Imagine being able to do a weighted sum of actions.)

• Both these features are available in Saffiotti’s THINKING CAP.

cis32-spring2006-sklar-lec3 22



• How could we program this?

• As follows:

if <some condition>

then <some action>

else if <another condition>

then <another action>

else . . .

• Here actions higher up in the compound if statement take precedence.

cis32-spring2006-sklar-lec3 23



Summary

• This lecture introduced stimulus-response agents.

• These do not think; they just act.

• We looked at two approaches to implementing such systems.

– Production rule systems.

– Subsumption architecture.

cis32-spring2006-sklar-lec3 24


