
cis32-ai — lecture # 4 — wed-8-feb-2006

today’s topics:

• behavior-based AI (finish up from last time)

• problem solving agents

cis32-spring2006-sklar-lec4 1



production systems, continued from last class

• Another kind of production system will have an overall goal.

• Imagine that we want the robot to follow the boundary until it finds a north-east corner

(like the top-left corner in the example) and then stop there.

• We can define another item in the feature vector:

x5 = s1s2s3s4s5s6s7s8

and then write the production system:

x5 → nil

1 → boundaryfollowing

where nil is an action which does nothing, and boundary following is a call to the previous

production system.

cis32-spring2006-sklar-lec4 2



• There are three points to make about this.

• First, in goal-achieving production systems, the topmost rule identifies the situation we are

aiming for.

• Once this is acheived, we need do nothing more.

• Second, conditions and actions further down in the production system lead towards the

achievement of the topmost condition.

• Indeed, action ai is intended to bring about cj where j < i.

• Third, we can build up a hierarchy of production systems, where systems lower in the

hierarchy move the robot towards meeting the conditions of productions in systems higher

up.

• This gives us a means of procedural abstraction.

cis32-spring2006-sklar-lec4 3



• Systems of rules like this are called teleo-reactive (T-R) programs.

• Every action in a T-R program works towards the achievement of a condition higher in the

program.

• It is typically easy to write such programs.

• T-R programs are also very robust.

• Even in the face of faulty sensor readings, carefully constructed T-R programs will get

back on track.

cis32-spring2006-sklar-lec4 4



Subsumption Architecture

• Another approach to combining simple sensory-driven behavior:

Perception

Sensory
signals

Action computation

XPerception Action computation

Corridor traveling

XPerception Action computation

Obstacle avoidance

XPerception Action computation
Action

Wandering

© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lec4 5



• Each module receives sensory information directly from the world.

• If the sensory inputs match the preconditions of a module, it executes.

• Modules can subsume each other (in the picture upper modules can subsume lower ones).

• When module i subsumes j, then if i’s precondition is met, the program of i replaces that

of j.

• So in the example:

– The robot wanders until it has to avoid an obstacle;

– Avoids an obstacle until it is travelling in a corridor.

cis32-spring2006-sklar-lec4 6



• Subsumption architecture started with Brooks.

• Idea is that:

– Build basic behavior;

– When that is refined, add a subsuming behavior;

– When that is refined, add another;

– . . .

• So far as I know, the maximum “stack height” is not *that* high.

• However, there are other ways of making the approach more sophisticated.

cis32-spring2006-sklar-lec4 7



• We can make the approach more flexible:

– Rather than having a fixed set of behaviors, construct a task specific set.

– (Plan, but in terms of behaviors not actions.)

• We can improve on subsumption.

– Rather than having one behavior replace another, merge behaviors.

– (Imagine being able to do a weighted sum of actions.)

• Both these features are available in Saffiotti’s THINKING CAP.

cis32-spring2006-sklar-lec4 8



• How could we program this?

• As follows:

if <some condition>

then <some action>

else if <another condition>

then <another action>

else . . .

• Here actions higher up in the compound if statement take precedence.

cis32-spring2006-sklar-lec4 9



Problem Solving Agents

• earlier, we introduced rational agents.

• Now consider agents as problem solvers :

Systems which set themselves goals and find sequences of actions that achieve these goals.

• What is a problem?

A goal and a means for achieving the goal.

• The goal specifies the state of affairs we want to bring about.

• The means specifies the operations we can perform in an attempt to bring about the goal.

• The difficulty is deciding what order to carry out the operations.

cis32-spring2006-sklar-lec4 10



• Operation of problem solving agent:

/* s is sequence of actions */

repeat {

percept = observeWorld();

state = updateState(state, p);

if s is empty then {

goal = formulateGoal(state);

prob = formulateProblem(state,p);

s = search(prob);

}

action = recommendation(s);

s = remainder(s, state);

}

until false; /* i.e., forever */

cis32-spring2006-sklar-lec4 11



• Key difficulties:

– formulateGoal(...)

– formulateProblem(...)

– search(...)

• It isn’t easy to see how to tackle any of these.

• Here we will concentrate mainly on search.

cis32-spring2006-sklar-lec4 12



Goal Formulation

• Where do an agent’s goals come from?

– Agent is a program with a specification.

– Specification is to maximise performance measure.

– Should adopt goal if achievement of that goal will maximise this measure.

• Goals provide a focus and filter for decision-making:

– focus : need to consider how to achieve them;

– filter : need not consider actions that are incompatible with goals.

cis32-spring2006-sklar-lec4 13



Problem Formulation

• Once goal is determined, formulate the problem to be solved.

• First determine set of possible states S of the problem.

• Then problem has:

– initial state — the starting point, s0;

– operations — the actions that can be performed, {a1, . . . , an}.

– goal — what you are aiming at — subset of S.

cis32-spring2006-sklar-lec4 14



• The initial state together with operations determines state space of problem.

• Operations cause changes in state.

• Solution is a sequence of actions such that when applied to initial state s0, we have goal

state.

• Pictorially:

cis32-spring2006-sklar-lec4 15



Examples of Toy Problems

• Example 1 : The 8 puzzle.

Do the following transformation, moving tile from occupied space to filled space.

1

2 8

6

3

4

7 5

2

7

1 3

5

4

6

8

cis32-spring2006-sklar-lec4 16



• Initial state as shown above.

• Goal state as shown below.

• Operations:

– a1: move any tile to left of empty square to right;

– a2:

– a3:

– a4:

cis32-spring2006-sklar-lec4 17



• This defines the following state space:

cis32-spring2006-sklar-lec4 18



• Example 2: The n queens problem from chess.

• Place n queens on chess board so that no queen can be taken by another.

• Initial state: empty chess board.

• Goal state: n queens on chess board, one occupying each space, so that none can take

others.

• Operations: place queen in empty square.

cis32-spring2006-sklar-lec4 19



Solution Cost

• For most problems, some solutions are better than others:

– in 8 puzzle, number of moves to get to solution;

– number of moves to checkmate;

– length of distance to travel.

• Mechanism for determining cost of solution is path cost function.

• This is the length of the path through the state-space from the initial state to the goal

state.

cis32-spring2006-sklar-lec4 20



• As an example, consider the following state in the 8-puzzle:

7 5

2 8 3

1 6 4

• How many moves are there to the solution?

cis32-spring2006-sklar-lec4 21



• There are four moves:

1.

2.

3.

4.

• And the path through the solution space looks like:

cis32-spring2006-sklar-lec4 22



Problem Solving as Search

• In the state space view of the world, finding a solution is finding a path through the state

space.

• When we solve a problem like the 8-puzzle, we have some idea of what constitutes the

next best move.

• It is hard to program this kind of approach.

• Instead we start by programming the kind of repetitive task that computers are good at.

• A brute force approach to problem solving involves exhaustively searching through the

space of all possible action sequences to find one that achieves goal.

cis32-spring2006-sklar-lec4 23



• Systematically generate a search tree

• For the 8-puzzle setup as:

7 5

2 8 3

1 6 4

cis32-spring2006-sklar-lec4 24



• The search tree is:

cis32-spring2006-sklar-lec4 25



• The tree is built by taking the initial state and identifying some states that can be

obtained by applying a single operator.

• These new states become the children of the initial state in the tree.

• These new states are then examined to see if they are the goal state.

• If not, the process is repeated on the new states.

• We can formalise this description by giving an algorithm for it.

cis32-spring2006-sklar-lec4 26



• General algorithm for search:

agenda = initial state;

while agenda not empty do{

pick node from agenda;

new nodes = apply operations to state;

if goal state in new nodes

then {

return solution;

}

add new nodes to agenda;

}

• Question: How to pick states for expansion?

• Two obvious solutions:

– depth first search;

– breadth first search.

cis32-spring2006-sklar-lec4 27



Breadth First Search

• Start by expanding initial state — gives tree of depth 1.

• Then expand all nodes that resulted from previous step — gives tree of depth 2.

• Then expand all nodes that resulted from previous step, and so on.

• Expand nodes at depth n before level n + 1.

cis32-spring2006-sklar-lec4 28



/* Breadth first search */

agenda = initial state;

while agenda not empty do

{

pick node from front of agenda;

new nodes = apply operations to state;

if goal state in new nodes then

{

return solution;

}

APPEND new nodes to END of agenda;

}

cis32-spring2006-sklar-lec4 29



• Advantage: guaranteed to reach a solution if one exists.

• If all solutions occur at depth n, then this is good approach.

• Disadvantage: time taken to reach solution!

• Let b be branching factor — average number of operations that may be performed from

any level.

• If solution occurs at depth d, then we will look at

1 + b + b2
+ · · · + bd

nodes before reaching solution — exponential.

cis32-spring2006-sklar-lec4 30



• Time for breadth first search (circa 1995 hardware):

Depth Nodes Time

0 1 1 msec

1 11 .01 sec

2 111 .1 sec

4 11,111 11 secs

6 106 18 mins

8 108 31 hours

10 1010 128 days

12 1012 35 years

14 1014 2500 years

20 1020 315 years

• Combinatorial explosion!

cis32-spring2006-sklar-lec4 31



Importance of ABSTRACTION

• When formulating a problem, it is crucial to pick the right level of abstraction.

• Example: Given the task of driving from New York to Boston.

• Some possible actions. . .

– depress clutch;

– turn steering wheel right 10 degrees;

. . . inappropriate level of abstraction.

Too much irrelevant detail.

cis32-spring2006-sklar-lec4 32



• Better level of abstraction:

– Take the Henry Hudson Parkway north

– Take the Cross County turnoff

. . . and so on.

• Getting abstraction level right lets you focus on the specifics of problem and is one way to

combat the combinatorial explosion.

• (Tell that to Mapquest).

cis32-spring2006-sklar-lec4 33



Depth First Search

• Start by expanding initial state.

• Pick one of nodes resulting from 1st step, and expand it.

• Pick one of nodes resulting from 1nd step, and expand it, and so on.

• Always expand deepest node.

• Follow one “branch” of search tree.

cis32-spring2006-sklar-lec4 34



/* Depth first search */

agenda = initial state;

while agenda not empty do

{

pick node from front of agenda;

new nodes = apply operations to state;

if goal state in new nodes then

{

return solution;

}

put new nodes on FRONT of agenda;

}

cis32-spring2006-sklar-lec4 35



• Depth first search is not guaranteed to find a solution if one exists.

• However, if it does find one, amount of time taken is much less than breadth first search.

• Memory requirement is much less than breadth first search.

• Solution found is not guaranteed to be the best.

cis32-spring2006-sklar-lec4 36



Performance Measures for Search

• Completeness :

Is the search technique guaranteed to find a solution if one exists?

• Time complexity :

How many computations are required to find solution?

• Space complexity :

How much memory space is required?

• Optimality :

How good is a solution going to be w.r.t. the path cost function.

cis32-spring2006-sklar-lec4 37



Summary

• This lecture finished simple behavior-based systems from last time.

– subsumption architecture

• This lecture also introduced the basics of problem solving.

– problem solving

– goal formulation

– state space search

– abstraction

– undirected search

∗ breadth 1st search

∗ depth 1st search

– performance measures for search

• state space models

– search for the goal through the state space

– solution is a/the (best, shortest, cheapest, ...) path through the state space

cis32-spring2006-sklar-lec4 38


