today’s topics:

- behavior-based AI (finish up from last time)
- problem solving agents
production systems, continued from last class

- Another kind of production system will have an overall goal.
- Imagine that we want the robot to follow the boundary until it finds a north-east corner (like the top-left corner in the example) and then stop there.
- We can define another item in the feature vector:

\[x_5 = s_1s_2s_3s_4s_5s_6s_7s_8 \]

and then write the production system:

\[x_5 \rightarrow \text{nil} \]
\[1 \rightarrow \text{boundaryfollowing} \]

where nil is an action which does nothing, and boundary_following is a call to the previous production system.
• There are three points to make about this.
• First, in goal-achieving production systems, the topmost rule identifies the situation we are aiming for.
• Once this is achieved, we need do nothing more.
• Second, conditions and actions further down in the production system lead towards the achievement of the topmost condition.
• Indeed, action a_i is intended to bring about c_j where $j < i$.
• Third, we can build up a hierarchy of production systems, where systems lower in the hierarchy move the robot towards meeting the conditions of productions in systems higher up.
• This gives us a means of procedural abstraction.
• Systems of rules like this are called *teleo-reactive* (T-R) programs.
• Every action in a T-R program works towards the achievement of a condition higher in the program.
• It is typically easy to write such programs.
• T-R programs are also very robust.
• Even in the face of faulty sensor readings, carefully constructed T-R programs will get back on track.
Subsumption Architecture

- Another approach to combining simple sensory-driven behavior:

```
[Diagram showing subsumption architecture with nodes for Perception and Action Computation, and processes for Corridor traveling, Obstacle avoidance, and Wandering.]
```

© 1998 Morgan Kaufman Publishers
• Each module receives sensory information directly from the world.
• If the sensory inputs match the preconditions of a module, it executes.
• Modules can subsume each other (in the picture upper modules can subsume lower ones).
• When module \(i \) subsumes \(j \), then if \(i \)'s precondition is met, the program of \(i \) replaces that of \(j \).
• So in the example:
 – The robot wanders until it has to avoid an obstacle;
 – Avoids an obstacle until it is travelling in a corridor.
• Subsumption architecture started with Brooks.

• Idea is that:
 – Build basic behavior;
 – When that is refined, add a subsuming behavior;
 – When that is refined, add another;
 – …

• So far as I know, the maximum “stack height” is not *that* high.

• However, there are other ways of making the approach more sophisticated.
• We can make the approach more flexible:
 – Rather than having a fixed set of behaviors, construct a task specific set.
 – (Plan, but in terms of behaviors not actions.)

• We can improve on subsumption.
 – Rather than having one behavior replace another, merge behaviors.
 – (Imagine being able to do a weighted sum of actions.)

• Both these features are available in Saffiotti’s THINKING CAP.
• How could we program this?

• As follows:

 if <some condition>
 then <some action>
 else if <another condition>
 then <another action>
 else ...

• Here actions higher up in the compound if statement take precedence.
Problem Solving Agents

- earlier, we introduced *rational agents*.
- Now consider agents as *problem solvers*:
 Systems which set themselves *goals* and find *sequences of actions* that achieve these goals.
- What is a problem?
 A *goal* and a *means* for achieving the goal.
- The goal specifies the state of affairs we want to bring about.
- The means specifies the operations we can perform in an attempt to bring about the goal.
- The difficulty is deciding what *order* to carry out the operations.
• Operation of problem solving agent:

/* s is sequence of actions */
repeat {
 percept = observeWorld();
 state = updateState(state, p);
 if s is empty then {
 goal = formulateGoal(state);
 prob = formulateProblem(state,p);
 s = search(prob);
 }
 action = recommendation(s);
 s = remainder(s, state);
}
until false; /* i.e., forever */
• Key difficulties:
 – formulateGoal(…)
 – formulateProblem(…)
 – search(…)

• It isn’t easy to see how to tackle any of these.

• Here we will concentrate mainly on search.
Goal Formulation

• Where do an agent’s goals come from?
 – Agent is a *program* with a *specification*.
 – Specification is to maximise performance measure.
 – Should *adopt goal* if achievement of that goal will maximise this measure.

• Goals provide a *focus* and *filter* for decision-making:
 – *focus*: need to consider how to achieve them;
 – *filter*: need not consider actions that are incompatible with goals.
Problem Formulation

- Once goal is determined, formulate the problem to be solved.
- First determine set of possible states S of the problem.
- Then problem has:
 - *initial state* — the starting point, s_0;
 - *operations* — the actions that can be performed, $\{a_1, \ldots, a_n\}$.
 - *goal* — what you are aiming at — subset of S.

• The initial state together with operations determines *state space* of problem.
• Operations cause *changes* in state.
• Solution is a sequence of actions such that when applied to initial state s_0, we have goal state.
• Pictorially:
Examples of Toy Problems

- *Example 1*: The 8 puzzle.

 Do the following transformation, moving tile from occupied space to filled space.

```
<table>
<thead>
<tr>
<th>2</th>
<th>8</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>
```
• Initial state as shown above.
• Goal state as shown below.
• Operations:
 – a_1: move any tile to left of empty square to right;
 – a_2:
 – a_3:
 – a_4:
• This defines the following state space:
• Example 2: The n queens problem from chess.
• Place n queens on chess board so that no queen can be taken by another.
• Initial state: empty chess board.
• Goal state: n queens on chess board, one occupying each space, so that none can take others.
• Operations: place queen in empty square.
Solution Cost

• For most problems, some solutions are better than others:
 – in 8 puzzle, number of moves to get to solution;
 – number of moves to checkmate;
 – length of distance to travel.
• Mechanism for determining cost of solution is path cost function.
• This is the length of the path through the state-space from the initial state to the goal state.
• As an example, consider the following state in the 8-puzzle:

```
    2  8  3
   --- ---
    1  6  4
   --- ---
    7  --- 5
```

• How many moves are there to the solution?
• There are four moves:
 1.
 2.
 3.
 4.

• And the path through the solution space looks like:
Problem Solving as Search

- In the state space view of the world, finding a solution is finding a path through the state space.
- When we solve a problem like the 8-puzzle, we have some idea of what constitutes the next best move.
- It is hard to program this kind of approach.
- Instead we start by programming the kind of repetitive task that computers are good at.
- A brute force approach to problem solving involves exhaustively searching through the space of all possible action sequences to find one that achieves goal.
- Systematically generate a *search tree*
- For the 8-puzzle setup as:

```
  2  8  3
  1  6  4
  7  5
```
• The search tree is:
• The tree is built by taking the initial state and identifying some states that can be obtained by applying a single operator.

• These new states become the *children* of the initial state in the tree.

• These new states are then examined to see if they are the goal state.

• If not, the process is repeated on the new states.

• We can formalise this description by giving an algorithm for it.
• General algorithm for search:

```plaintext
agenda = initial state;
while agenda not empty do{
    pick node from agenda;
    new nodes = apply operations to state;
    if goal state in new nodes
        then {
            return solution;
        }
    add new nodes to agenda;
}
```

• Question: How to pick states for expansion?

• Two obvious solutions:
 – depth first search;
 – breadth first search.
Breadth First Search

- Start by *expanding* initial state — gives tree of depth 1.
- Then expand all nodes that resulted from previous step — gives tree of depth 2.
- Then expand all nodes that resulted from previous step, and so on.
- Expand nodes at depth n before level $n + 1$.
/* Breadth first search */

agenda = initial state;

while agenda not empty do
{
 pick node from front of agenda;
 new nodes = apply operations to state;
 if goal state in new nodes then
 {
 return solution;
 }

 APPEND new nodes to END of agenda;
}
• Advantage: *guaranteed* to reach a solution if one exists.
• If all solutions occur at depth n, then this is good approach.
• Disadvantage: time taken to reach solution!
• Let b be *branching factor* — average number of operations that may be performed from any level.
• If solution occurs at depth d, then we will look at

$$1 + b + b^2 + \cdots + b^d$$

nodes before reaching solution — *exponential*.
• Time for breadth first search (circa 1995 hardware):

<table>
<thead>
<tr>
<th>Depth</th>
<th>Nodes</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1 msec</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>.01 sec</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>.1 sec</td>
</tr>
<tr>
<td>4</td>
<td>11,111</td>
<td>11 secs</td>
</tr>
<tr>
<td>6</td>
<td>10^6</td>
<td>18 mins</td>
</tr>
<tr>
<td>8</td>
<td>10^8</td>
<td>31 hours</td>
</tr>
<tr>
<td>10</td>
<td>10^{10}</td>
<td>128 days</td>
</tr>
<tr>
<td>12</td>
<td>10^{12}</td>
<td>35 years</td>
</tr>
<tr>
<td>14</td>
<td>10^{14}</td>
<td>2500 years</td>
</tr>
<tr>
<td>20</td>
<td>10^{20}</td>
<td>3^{15} years</td>
</tr>
</tbody>
</table>

• *Combinatorial explosion!*
Importance of ABSTRACTION

• When formulating a problem, it is crucial to pick the right level of abstraction.
• Example: Given the task of driving from New York to Boston.
• Some possible actions...
 – depress clutch;
 – turn steering wheel right 10 degrees;

... inappropriate level of abstraction.
Too much irrelevant detail.
- Better level of abstraction:
 - Take the Henry Hudson Parkway north
 - Take the Cross County turnoff
 . . . and so on.
- Getting abstraction level right lets you focus on the specifics of problem and is one way to combat the combinatorial explosion.
- (Tell that to Mapquest).
Depth First Search

- Start by expanding initial state.
- Pick one of nodes resulting from 1st step, and expand it.
- Pick one of nodes resulting from 1nd step, and expand it, and so on.
- Always expand *deepest* node.
- Follow one “branch” of search tree.
/* Depth first search */

agenda = initial state;

while agenda not empty do
{
 pick node from front of agenda;
 new nodes = apply operations to state;
 if goal state in new nodes then
 {
 return solution;
 }

 put new nodes on FRONT of agenda;
}
• Depth first search is \textit{not} guaranteed to find a solution if one exists.
• However, if it \textit{does} find one, amount of time taken is much less than breadth first search.
• \textit{Memory requirement} is much less than breadth first search.
• Solution found is \textit{not} guaranteed to be the best.
Performance Measures for Search

- **Completeness:**
 Is the search technique guaranteed to find a solution if one exists?

- **Time complexity:**
 How many computations are required to find solution?

- **Space complexity:**
 How much memory space is required?

- **Optimality:**
 How good is a solution going to be w.r.t. the path cost function.
Summary

• This lecture finished simple behavior-based systems from last time.
 – subsumption architecture
• This lecture also introduced the basics of problem solving.
 – problem solving
 – goal formulation
 – state space search
 – abstraction
 – undirected search
 * breadth 1st search
 * depth 1st search
 – performance measures for search
• state space models
 – search for the goal through the state space
 – solution is a/the (best, shortest, cheapest, ...) path through the state space