cis32-ai — lecture # 5 — wed-15-feb-2006

today'’s topics:

e heuristic search (part 1 of 2)
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Recap

The last lecture introduced
e Basic problem solving techniques:

— Breadth-first search
— Depth-first search

e Breadth-first search is complete but expensive.
e Depth-first search is cheap but incomplete
e Can't we do better than this?

e [hat is what this lecture is about
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Overview

Aims of this lecture:

e show how basic search (depth 1st, breadth 1st) can be improved;

e introduce;

— depth limited search;

— iterative deepening.

e show that even with such improvements, search is hopelessly unrealistic for real problems.
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Algorithmic Improvements

e Are then any algorithmic improvements we can make to basic search algorithms that will
improve overall performance?

e [ry to get optimality and completeness of breadth 1st search with space efficiency of
depth 1st.

e Not too much to be done about time complexity :-(
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Depth Limited Search

e Depth first search has some desirable properties — space complexity.
e But if wrong branch expanded (with no solution on it), then it won't terminate.
e ldea: introduce a depth limit on branches to be expanded.

e Don't expand a branch below this depth.
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e General algorithm for depth limited search:

depth limit = max depth to search to;
agenda = initial state;
while agenda not empty do
take node from front of agenda;
new nodes = apply operations to node;
if goal state in new nodes then {
return solution;
+
if depth(node) < depth limit then {
add new nodes to front of agenda;

+
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e For the 8-puzzle setup as:

2 8 3 1 2 3
1 6 | 4 8 4
7 5 V4 6 5

e the search will be as follows:
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e So, when we hit the depth bound, we don’t add any more nodes to the agenda.
e Then we pick the next node off the agenda.

e This has the effect of moving the search back to the last node above depth limit that that
is “partly expanded”.

e This is known as chronological backtracking.

e The effect of the depth limit is to force the search of the whole state space down to the
limit.

e We get the completeness of breadth-first (down to the limit), with the space cost of depth
first.
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lterative Deepening

e Unfortunately, if we choose a max depth for d.l.s. such that shortest solution is longer,
d.ls. is not complete.

e Iterative deepening an ingenious complete version of it.

e Basic idea is:

— do d.l.s. for depth 1; if solution found, return it;
— otherwise do d.l.s. for depth n; if solution found, return it;

— otherwise, ...

e So we repeat d.l.s. for all depths until solution found.
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e General algorithm for depth limited search:

depth limit = 1;
repeat {
result = depth_limited_search(
max depth = depth limit;
agenda = initial node;
);
if result contains goal then {
return result;

+
depth limit = depth limit + 1;
} until false; /* i.e., forever x/

e Calls d.l.s. as subroutine.
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e Note that in iterative deepening, we re-generate nodes on the fly.

Each time we do call on depth limited search for depth d, we need to regenerate the tree
to depth d — 1.

e Isn't this inefficient?
e [radeoff time for memory.
e In general we might take a /ittle more time, but we save a lot of memory.

e Now for breadth-first search to level d:

Nbf = 1—|—b+b2+b
bd+1_1

b—1
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e In contrast a complete depth-limited search to level j:
prl—1
b—1

e (This is just a breadth-first search to depth j.)

e In the worst case, then we have to do this to depth d, so expanding:

d ptt—1
Nig = > —/——

b2 — 2b — bd + d + 1
(b—1)?
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e For large d:
Nig b
Ny b—1

e So for high branching and relatively deep goals we do a small amount more work.

e Example: Suppose b = 10 and d = 5.

Breadth first search would require examining 111, 111 nodes, with memory requirement of
100, 000 nodes.

lterative deepening for same problem: 123,456 nodes to be searched, with memory
requirement only 50 nodes.

Takes 11% longer in this case.
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e For the 8-puzzle setup as:

2 8 3
1 6 4
7 5

e What would iterative deepening search look like?

e Well, it would explore the search space:
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e In the following way.

e States would be expanded in the order:

1.1

2.1,2, 3,4

3.1,2,5,3,6,7,8, 4, 0.

4. 1, 2,5, 10, 11, 3, 6, 13, 13, 7, 14, 15, 8, 16, 17, 4, 9, 18, 109.
5. ...

e Note that these are the states visited, not the nodes on the agenda.
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Bi-directional Search

e Suppose we search from the goal state backwards as well as from initial state forwards.

e Involves determining predecessor nodes to goal, and then looking at predecessor nodes to
this, ...

e Rather than doing one search of b? we do two b%/? searches.

e Much more efficient.
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e Example:
Suppose b = 10, d = 6.
Breadth first search will examine nodes.

Bidirectional search will examine nodes.
e Can combine different search strategies in different directions.

e For large d, is still impractical!
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Summary

e This lecture has looked at some more efficient techniques than breadth first and depth first
search.

— depth-limited search;
— iterative-deepening search; and

— bidirectional search.

e These all improve on depth-first and breadth-first search.
e However, all fail for big enough problems (too large state space).

e Next lecture, we will look at approaches that cut down the size of the state-space that is
searched.
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