
cis32-ai — lecture # 5 — wed-15-feb-2006

today’s topics:

• heuristic search (part 1 of 2)

cis32-spring2006-sklar-lec5 1

Recap

The last lecture introduced

• Basic problem solving techniques:

– Breadth-first search

– Depth-first search

• Breadth-first search is complete but expensive.

• Depth-first search is cheap but incomplete

• Can’t we do better than this?

• That is what this lecture is about

cis32-spring2006-sklar-lec5 2

Overview

Aims of this lecture:

• show how basic search (depth 1st, breadth 1st) can be improved;

• introduce:

– depth limited search;

– iterative deepening .

• show that even with such improvements, search is hopelessly unrealistic for real problems.

cis32-spring2006-sklar-lec5 3

Algorithmic Improvements

• Are then any algorithmic improvements we can make to basic search algorithms that will

improve overall performance?

• Try to get optimality and completeness of breadth 1st search with space efficiency of

depth 1st.

• Not too much to be done about time complexity :-(

cis32-spring2006-sklar-lec5 4

Depth Limited Search

• Depth first search has some desirable properties — space complexity.

• But if wrong branch expanded (with no solution on it), then it won’t terminate.

• Idea: introduce a depth limit on branches to be expanded.

• Don’t expand a branch below this depth.

cis32-spring2006-sklar-lec5 5

• General algorithm for depth limited search:

depth limit = max depth to search to;

agenda = initial state;

while agenda not empty do

take node from front of agenda;

new nodes = apply operations to node;

if goal state in new nodes then {

return solution;

}

if depth(node) < depth limit then {

add new nodes to front of agenda;

}

}

cis32-spring2006-sklar-lec5 6

• For the 8-puzzle setup as:

1

2 8

6

3

4

7 5

2

7

1 3

5

4

6

8

• the search will be as follows:

cis32-spring2006-sklar-lec5 7

2 8 3
1 6 4
7 50

2 8 3
1 6 4

7 51

2 8 3
6 4

1 7 52

8 3
2 6 4
1 7 53

8 3
2 6 4
1 7 54

8 3
2 6 4
1 7 55

(a)

2 8 3
1 6 4
7 50

2 8 3
1 6 4

7 51

2 8 3
6 4

1 7 52

8 3
2 6 4
1 7 5 1 7 53

8 32
6 4

7

8 3
2 6 4
1 7 54

8 3
2

6
4

1 7 56

(b)

2 8 3
1 6 4
7 50

2 8 3
1 6 4

7 51

2 8 3
6 4

1 7 52

8 32
6 4
1 7 57

8
32

6 4
1 7 58

8
32

6 4
1 7 59

(c)

Discarded before
generating node 7

© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lec5 8

• So, when we hit the depth bound, we don’t add any more nodes to the agenda.

• Then we pick the next node off the agenda.

• This has the effect of moving the search back to the last node above depth limit that that

is “partly expanded”.

• This is known as chronological backtracking.

• The effect of the depth limit is to force the search of the whole state space down to the

limit.

• We get the completeness of breadth-first (down to the limit), with the space cost of depth

first.

cis32-spring2006-sklar-lec5 9

Iterative Deepening

• Unfortunately, if we choose a max depth for d.l.s. such that shortest solution is longer,

d.l.s. is not complete.

• Iterative deepening an ingenious complete version of it.

• Basic idea is:

– do d.l.s. for depth 1; if solution found, return it;

– otherwise do d.l.s. for depth n; if solution found, return it;

– otherwise, . . .

• So we repeat d.l.s. for all depths until solution found.

cis32-spring2006-sklar-lec5 10

• General algorithm for depth limited search:

depth limit = 1;

repeat {

result = depth_limited_search(

max depth = depth limit;

agenda = initial node;

);

if result contains goal then {

return result;

}

depth limit = depth limit + 1;

} until false; /* i.e., forever */

• Calls d.l.s. as subroutine.

cis32-spring2006-sklar-lec5 11

Depth bound = 1 Depth bound = 2 Depth bound = 3 Depth bound = 4

© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lec5 12

• Note that in iterative deepening, we re-generate nodes on the fly.

Each time we do call on depth limited search for depth d, we need to regenerate the tree

to depth d − 1.

• Isn’t this inefficient?

• Tradeoff time for memory.

• In general we might take a little more time, but we save a lot of memory.

• Now for breadth-first search to level d:

Nbf = 1 + b + b2 + b

=
bd+1

− 1

b − 1

cis32-spring2006-sklar-lec5 13

• In contrast a complete depth-limited search to level j:

N j
df =

bj+1
− 1

b − 1

• (This is just a breadth-first search to depth j.)

• In the worst case, then we have to do this to depth d, so expanding:

Nid =
d∑

j=0

bj+1
− 1

b − 1
...

=
bd+2

− 2b − bd + d + 1

(b − 1)2

cis32-spring2006-sklar-lec5 14

• For large d:

Nid

Nbf
=

b

b − 1

• So for high branching and relatively deep goals we do a small amount more work.

• Example: Suppose b = 10 and d = 5.

Breadth first search would require examining 111, 111 nodes, with memory requirement of

100, 000 nodes.

Iterative deepening for same problem: 123, 456 nodes to be searched, with memory

requirement only 50 nodes.

Takes 11% longer in this case.

cis32-spring2006-sklar-lec5 15

• For the 8-puzzle setup as:

1

2 8

6

3

4

7 5

2

7

1 3

5

4

6

8

• What would iterative deepening search look like?

• Well, it would explore the search space:

cis32-spring2006-sklar-lec5 16

2 8

5

3
1 6 4
7

4

2 8 3
1 6 4
7 5

1
2 8

6

3
1 4
7 5

3

2 8

7

3
1 6 4

5

2

2 8

5

3
1 6
7 4

9

2 8

6

3
1 4
7 5

8

2

6

3
1 8 4
7 5

7

2 8

6

3
1 4

7 5

6

2 8

7

3
6 4

1 5

5

2 8

5
1 6 3
7 4

19

8

5

3
6

2

7
1

4

18

8

6

3
4

2

7
1 5

17

8

6
4 3

5

16

3

6
8

2

7
1

2

7
1 4

5

15

8

7

3
2 6 4
1 5

10

2 8

7

3
6 4
1 5

11

8

6

3
2 1 4
7 5

12

2 8

6

3
7 1 4

5

13

2

6

3
1 8 4
7 5

14

2

5

8
1 6 3
7 4

2 8 3
1 5 6
7 4

2

5

3
1 8 6
7 4

2 8

5

3
1 6

7 4

2 8 3
1 4 5
7 6

2

6

8
1 4 3
7 5

2 3

6

4
1 8
7 5

8

7

3
2 6 4
1 5

20

2

7

3
6 8 4
1 5

21

2 8

7

3
6 4
1 5

22

2 8 3
6 7 4
1 5

23

8

6

3
2 1 4
7 5

24

2 8 3
7 1 4
6 5

25

1 2

6

3
8 4

7 5

26

27

8 3

7
2 6 4
1 5

8 6

7

3
2 4
1 5

2

7

3
6 8 4
1 5

2 3

7
6 8 4
1 5

2 8

7
6 4 3
1 5

2 8

7

3
6 4 5
1

2 8

1

3
6 7 4

5

2 8

5

3
6 7 4
1

8 3

6
2 1 4
7 5

8 1

6

3
2 4
7 5

2 8

1

3
7 4
6 5

2 8

5

3
7 1 4
6

1 2

6

3
8 4
7 5

1 2

6

3
7 8 4

5

Goal
nodeStart

node

© 1998 Morgan Kaufman Publishers

ci
s3

2
-s

p
ri
n
g
2
0
0
6
-s

k
la

r-
le

c5
1
7

• In the following way.

• States would be expanded in the order:

1. 1

2. 1, 2, 3, 4

3. 1, 2, 5, 3, 6, 7, 8, 4, 9.

4. 1, 2, 5, 10, 11, 3, 6, 13, 13, 7, 14, 15, 8, 16, 17, 4, 9, 18, 19.

5. . . .

• Note that these are the states visited, not the nodes on the agenda.

cis32-spring2006-sklar-lec5 18

Bi-directional Search

• Suppose we search from the goal state backwards as well as from initial state forwards.

• Involves determining predecessor nodes to goal, and then looking at predecessor nodes to

this, . . .

• Rather than doing one search of bd, we do two bd/2 searches.

• Much more efficient.

cis32-spring2006-sklar-lec5 19

• Example:

Suppose b = 10, d = 6.

Breadth first search will examine nodes.

Bidirectional search will examine nodes.

• Can combine different search strategies in different directions.

• For large d, is still impractical!

cis32-spring2006-sklar-lec5 20

Summary

• This lecture has looked at some more efficient techniques than breadth first and depth first

search.

– depth-limited search;

– iterative-deepening search; and

– bidirectional search.

• These all improve on depth-first and breadth-first search.

• However, all fail for big enough problems (too large state space).

• Next lecture, we will look at approaches that cut down the size of the state-space that is

searched.

cis32-spring2006-sklar-lec5 21

