cis32-ai — lecture # 5 — wed-15-feb-2006

today'’s topics:

e heuristic search (part 1 of 2)

cis32-spring2006-sklar-lech 1

Recap

The last lecture introduced
e Basic problem solving techniques:

— Breadth-first search
— Depth-first search

e Breadth-first search is complete but expensive.
e Depth-first search is cheap but incomplete
e Can't we do better than this?

e [hat is what this lecture is about

cis32-spring2006-sklar-lech 2

Overview

Aims of this lecture:

e show how basic search (depth 1st, breadth 1st) can be improved;

e introduce;

— depth limited search;

— iterative deepening.

e show that even with such improvements, search is hopelessly unrealistic for real problems.

cis32-spring2006-sklar-lecs 3

Algorithmic Improvements

e Are then any algorithmic improvements we can make to basic search algorithms that will
improve overall performance?

e [ry to get optimality and completeness of breadth 1st search with space efficiency of
depth 1st.

e Not too much to be done about time complexity :-(

cis32-spring2006-sklar-lec5 4

Depth Limited Search

e Depth first search has some desirable properties — space complexity.
e But if wrong branch expanded (with no solution on it), then it won't terminate.
e ldea: introduce a depth limit on branches to be expanded.

e Don't expand a branch below this depth.

cis32-spring2006-sklar-lec5 5

e General algorithm for depth limited search:

depth limit = max depth to search to;
agenda = initial state;
while agenda not empty do
take node from front of agenda;
new nodes = apply operations to node;
if goal state in new nodes then {
return solution;
+
if depth(node) < depth limit then {
add new nodes to front of agenda;

+

cis32-spring2006-sklar-lecs 6

e For the 8-puzzle setup as:

2 8 3 1 2 3
1 6 | 4 8 4
7 5 V4 6 5

e the search will be as follows:

cis32-spring2006-sklar-lec5 7

2[8[3 2[8[3 2[8[3
16/ 4 16/ 4 1(6(4
2[8[3 2[8[3 2[8[3
1[6[4 16/ 4 16/ 4
1175 1175 10175
2[8[3 2[8[3 2]8[3
64 64 64
2 1175 2 [1[7]5 2 [1[7]5
8[3 8[3 2[8]3 2[8[3
2(6[4 2[6]4 6] [4 6] [4
3 [I[7][5 3 [1[7][5 rARNIE 7 [I7[5
8] 3 8] I3 2] [3
2[6[4 2[6]4 6[8[4
4 [1[7]5 4 [1[7]5 8 [1[7][5
8[3 8[6[3 2[3
2[6[4 2] |4) 6184
5 [1[7]5 6 [11715] / Discarded before 9 [1[7]5
generating node 7
(a) (b) (c)

© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lech 8

e So, when we hit the depth bound, we don’t add any more nodes to the agenda.
e Then we pick the next node off the agenda.

e This has the effect of moving the search back to the last node above depth limit that that
is “partly expanded”.

e This is known as chronological backtracking.

e The effect of the depth limit is to force the search of the whole state space down to the
limit.

e We get the completeness of breadth-first (down to the limit), with the space cost of depth
first.

cis32-spring2006-sklar-lech 9

lterative Deepening

e Unfortunately, if we choose a max depth for d.l.s. such that shortest solution is longer,
d.ls. is not complete.

e Iterative deepening an ingenious complete version of it.

e Basic idea is:

— do d.l.s. for depth 1; if solution found, return it;
— otherwise do d.l.s. for depth n; if solution found, return it;

— otherwise, ...

e So we repeat d.l.s. for all depths until solution found.

cis32-spring2006-sklar-lecs 10

e General algorithm for depth limited search:

depth limit = 1;
repeat {
result = depth_limited_search(
max depth = depth limit;
agenda = initial node;
);
if result contains goal then {
return result;

+
depth limit = depth limit + 1;
} until false; /* i.e., forever x/

e Calls d.l.s. as subroutine.

cis32-spring2006-sklar-lecs

11

> /{/k /)
ANA AA
AR

e o o o o o
Depth bound =1 Depth bound =2 Depth bound =3 Depth bound =4

© 1998 Morgan Kaufman Publishers

cis32-spring2006-sklar-lecs 12

e Note that in iterative deepening, we re-generate nodes on the fly.

Each time we do call on depth limited search for depth d, we need to regenerate the tree
to depth d — 1.

e Isn't this inefficient?
e [radeoff time for memory.
e In general we might take a /ittle more time, but we save a lot of memory.

e Now for breadth-first search to level d:

Nbf = 1—|—b+b2+b
bd+1_1

b—1

cis32-spring2006-sklar-lecs 13

e In contrast a complete depth-limited search to level j:
prl—1
b—1

e (This is just a breadth-first search to depth j.)

e In the worst case, then we have to do this to depth d, so expanding:

d ptt—1
Nig = > —/——

b2 — 2b — bd + d + 1
(b—1)?

cis32-spring2006-sklar-lecs

14

e For large d:
Nig b
Ny b—1

e So for high branching and relatively deep goals we do a small amount more work.

e Example: Suppose b = 10 and d = 5.

Breadth first search would require examining 111, 111 nodes, with memory requirement of
100, 000 nodes.

lterative deepening for same problem: 123,456 nodes to be searched, with memory
requirement only 50 nodes.

Takes 11% longer in this case.

cis32-spring2006-sklar-lech 15

e For the 8-puzzle setup as:

2 8 3
1 6 4
7 5

e What would iterative deepening search look like?

e Well, it would explore the search space:

cis32-spring2006-sklar-lecs

16

G93]-4e|s-900gBuMds-ZgsId

= O
Q5
Qo
O c
0| o [w| [oof< 12153 Tl B G2 5 (fe) <0 (]S 12155 () I (2] () Gzl[Ts] <0 [0 (o]0 < [0
N[®fo] n~ [N Jo] [©]Fw] [© =] [F[[o] [@]F[o] [©[~w] (o= [©FN [©S] [l [~ [©] I~ [fof~
= N [N [NNo] [Nfo] [l [l [N[olH] [Nw ol [fo]—] [fo]= of—| [oo]o[—| [oofe][—=
% >
— — N
[ON] [P[ON] [@[CN] [[CF] [P[[©] [©PWw] K] [© o[<o) i o]0 S o] o i i
©O[wo] [oo]w] |]w] [0]—[w] o]+ <t|oo| [m]oofo © [N]eo[©] L0 [< |0 ™ [~ RIS - oo~ o O~
N[=N] [[EN] [ENS] [CN [[EN] [N[EN] [N]E~ N [~ AN [N[N[©] NENE N [N N [N N [N]o]—] N [
A \» A q ;ﬁ ‘ﬁ A
<t ool 2) <0 0|0 oY ||| o[<[] |||
9865 00 |®] | N~ [®]S[© © |®|S|© L0 [$2fof©, 4286 3816 2816 18 N~ 00067
P 1N o] o e 1 o e I T) o = (5] o = B N e [[~ 1 [N~ [[~ i [fo]—] [[~[=
o] < o] [0 i o<W0 <o
EEmE EEE EEE oo~
o [N[—[~ 00 [N[=~ N~ [o [~ [

1]8| 4]
>765

4

2[8|3
1]|6[4
715

2[8|3

7[6]5

2(8|3
6
7

-1

5

1

Start [2[8[3

© 1998 Morgan Kaufman Publishers

node [7

e In the following way.

e States would be expanded in the order:

1.1

2.1,2, 3,4

3.1,2,5,3,6,7,8, 4, 0.

4. 1, 2,5, 10, 11, 3, 6, 13, 13, 7, 14, 15, 8, 16, 17, 4, 9, 18, 109.
5. ...

e Note that these are the states visited, not the nodes on the agenda.

cis32-spring2006-sklar-lecs 18

Bi-directional Search

e Suppose we search from the goal state backwards as well as from initial state forwards.

e Involves determining predecessor nodes to goal, and then looking at predecessor nodes to
this, ...

e Rather than doing one search of b? we do two b%/? searches.

e Much more efficient.

cis32-spring2006-sklar-lecs 19

e Example:
Suppose b = 10, d = 6.
Breadth first search will examine nodes.

Bidirectional search will examine nodes.
e Can combine different search strategies in different directions.

e For large d, is still impractical!

cis32-spring2006-sklar-lecs 20

Summary

e This lecture has looked at some more efficient techniques than breadth first and depth first
search.

— depth-limited search;
— iterative-deepening search; and

— bidirectional search.

e These all improve on depth-first and breadth-first search.
e However, all fail for big enough problems (too large state space).

e Next lecture, we will look at approaches that cut down the size of the state-space that is
searched.

cis32-spring2006-sklar-lech 21

