today’s topics:

- heuristic search (part 1 of 2)
Recap

The last lecture introduced

- Basic problem solving techniques:
 - Breadth-first search
 - Depth-first search

- Breadth-first search is complete but expensive.
- Depth-first search is cheap but incomplete
- Can’t we do better than this?
- That is what this lecture is about
Overview

Aims of this lecture:

- show how basic search (depth 1st, breadth 1st) can be improved;
- introduce:
 - depth limited search;
 - iterative deepening.
- show that even with such improvements, search is hopelessly unrealistic for real problems.
Algorithmic Improvements

- Are then any *algorithmic* improvements we can make to basic search algorithms that will improve overall performance?
- Try to get *optimality* and *completeness* of breadth 1st search with *space efficiency* of depth 1st.
- Not too much to be done about time complexity :-(

Depth Limited Search

- Depth first search has some desirable properties — space complexity.
- But if wrong branch expanded (with no solution on it), then it won’t terminate.
- Idea: introduce a *depth limit* on branches to be expanded.
- Don’t expand a branch below this depth.
• General algorithm for depth limited search:

```plaintext
depth limit = max depth to search to;
agenda = initial state;
while agenda not empty do
    take node from front of agenda;
    new nodes = apply operations to node;
    if goal state in new nodes then {
        return solution;
    }
    if depth(node) < depth limit then {
        add new nodes to front of agenda;
    }
```

• For the 8-puzzle setup as:

```
 2  8  3
 1  6  4
 7   5
```

```
 1  2  3
 8   4
 7  6  5
```

• the search will be as follows:
Discarded before generating node 7
• So, when we hit the depth bound, we don’t add any more nodes to the agenda.
• Then we pick the next node off the agenda.
• This has the effect of moving the search back to the last node above depth limit that that is “partly expanded”.
• This is known as chronological backtracking.
• The effect of the depth limit is to force the search of the whole state space down to the limit.
• We get the completeness of breadth-first (down to the limit), with the space cost of depth first.
Iterative Deepening

- Unfortunately, if we choose a max depth for d.l.s. such that shortest solution is longer, d.l.s. is not complete.
- Iterative deepening an ingenious complete version of it.
- Basic idea is:
 - do d.l.s. for depth 1; if solution found, return it;
 - otherwise do d.l.s. for depth n; if solution found, return it;
 - otherwise, ...
- So we repeat d.l.s. for all depths until solution found.
• General algorithm for depth limited search:

 depth limit = 1;
 repeat {
 result = depth_limited_search(
 max depth = depth limit;
 agenda = initial node;
);
 if result contains goal then {
 return result;
 }
 depth limit = depth limit + 1;
 } until false; /* i.e., forever */

• Calls d.l.s. as subroutine.
Depth bound = 1 Depth bound = 2 Depth bound = 3 Depth bound = 4
• Note that in iterative deepening, we *re-generate nodes on the fly.*
 Each time we do call on depth limited search for depth \(d \), we need to regenerate the tree to depth \(d - 1 \).
• Isn’t this inefficient?
• Tradeoff *time* for *memory*.
• In general we might take a *little* more time, but we save a *lot* of memory.
• Now for breadth-first search to level \(d \):

\[
N_{bf} = 1 + b + b^2 + b = \frac{b^{d+1} - 1}{b - 1}
\]
In contrast a complete depth-limited search to level j:

$$N_{df}^j = \frac{b^{j+1} - 1}{b - 1}$$

(This is just a breadth-first search to depth j.)

In the worst case, then we have to do this to depth d, so expanding:

$$N_{id} = \sum_{j=0}^{d} \frac{b^{j+1} - 1}{b - 1}$$

$$= \frac{b^{d+2} - 2b - bd + d + 1}{(b - 1)^2}$$
• For large d:

\[
\frac{N_{id}}{N_{bf}} = \frac{b}{b-1}
\]

• So for high branching and relatively deep goals we do a small amount more work.

• Example: Suppose $b = 10$ and $d = 5$.

Breadth first search would require examining 111,111 nodes, with memory requirement of 100,000 nodes.

Iterative deepening for same problem: 123,456 nodes to be searched, with memory requirement only 50 nodes.

Takes 11% longer in this case.
• For the 8-puzzle setup as:

<table>
<thead>
<tr>
<th>2</th>
<th>8</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

• What would iterative deepening search look like?
• Well, it would explore the search space:
• In the following way.

• States would be expanded in the order:

1. 1
2. 1, 2, 3, 4
3. 1, 2, 5, 3, 6, 7, 8, 4, 9.
4. 1, 2, 5, 10, 11, 3, 6, 13, 13, 7, 14, 15, 8, 16, 17, 4, 9, 18, 19.
5. . . .

• Note that these are the states visited, not the nodes on the agenda.
Bi-directional Search

- Suppose we search from the goal state backwards as well as from initial state forwards.
- Involves determining predecessor nodes to goal, and then looking at predecessor nodes to this, . . .
- Rather than doing one search of b^d, we do two $b^{d/2}$ searches.
- Much more efficient.
• Example:
 Suppose $b = 10$, $d = 6$.
 Breadth first search will examine nodes.
 Bidirectional search will examine nodes.
• Can combine different search strategies in different directions.
• For large d, is still impractical!
Summary

• This lecture has looked at some more efficient techniques than breadth first and depth first search.
 – depth-limited search;
 – iterative-deepening search; and
 – bidirectional search.

• These all improve on depth-first and breadth-first search.

• However, all fail for big enough problems (too large state space).

• Next lecture, we will look at approaches that cut down the size of the state-space that is searched.