Recap

the heuristic search part 1 lecture introduced
• More advanced problem solving techniques:
 – Depth limited search
 – Iterative deepening
 – Bidirectional search
• These improved on basic techniques like breadth-first and depth-first search.
• However, they still aren’t powerful enough to give solutions for realistic problems.
• Are there more improvements we can make?

Overview

Aims of this lecture:
• To show how applying some knowledge of the problem can help.
• Introduce heuristics — rules of thumb.
• Introduce heuristic search: guided by rules of thumb which help to decide which node to expand:
 – uniform-cost search;
 – greedy search;
 – A* search.

Heuristic (Informed) Search

• Whatever search technique we use, exponential time complexity.
• Tweaks to the algorithm will not reduce this to polynomial.
• We need problem specific knowledge to guide the search.
• Simplest form of problem specific knowledge is heuristic.
• Usual implementation in search is via an evaluation function which indicates desirability of expanding node.
Uniform Cost Search

- Recall we have a path cost function,
 \[g : \text{Nodes} \rightarrow \mathbb{R} \]
 which gives cost to each path.
- Why not expand the cheapest path first?
- Intuition: cheapest is likely to be best!

General algorithm for uniform search:

\[
\text{agenda} = \text{initial state;}
\text{while agenda not empty do }
\{
\text{take node from agenda such that}
\\quad g(\text{node}) = \min \{ g(n) \mid n \in \text{agenda} \}
\text{new nodes} = \text{apply operations to node;}
\text{if goal state in new nodes then }
\quad \text{return solution;}
\text{else add new nodes to agenda}
\}
\]

Uniform cost search guaranteed to find cheapest solution assuming path costs grow monotonically.
- In other words, adding another step to the solution makes it more costly.
- If path costs don’t grow monotonically, then exhaustive search is required.

Once again we can illustrate this on the 8-puzzle:

\[
\begin{array}{|c|c|c|}
\hline
2 & 8 & 3 \\
\hline
1 & 6 & 4 \\
\hline
7 & 5 & \\
\hline
\end{array}
\quad \rightarrow
\begin{array}{|c|c|c|}
\hline
1 & 2 & 3 \\
\hline
8 & 4 & \\
\hline
7 & 6 & 5 \\
\hline
\end{array}
\]
- For this set up, the search of the space:
• Will happen in the following way.
• States would be expanded in the order:
 1. 1
 2. 2, 3, 4
 3. 5, 6, 7, 8, 9
 4. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
 5. ...
• Note that this is just like breadth first search (because the path costs are just the same).

• Instead, assume up/down moves cost 2 and left/right moves cost 1.
• States would be expanded in the order:
 1. 1
 2. 2, 3, 4
 3. 5
 4. 9
 5. 6, 7, 8
 6. ...

Greedy Search
• Most heuristics estimate cost of cheapest path from node to solution.
• We have a heuristic function,
 \[h : \text{Nodes} \rightarrow \mathbb{R} \]
 which estimates the distance from the node to the goal.
• Example: In route finding, heuristic might be straight line distance from node to destination.
• Heuristic is said to be admissible if it never overestimates cheapest solution. Admissible = optimistic.
• Greedy search involves expanding node with cheapest expected cost to solution.
General algorithm for greedy search:

```plaintext
agenda = initial state;
while agenda not empty do {
    take node from agenda such that
    h(node) = min \{ h(n) | n in agenda \}
    new nodes = apply operations to node;
    if goal state in new nodes then {
        return solution;
    }
    else add new nodes to agenda
}
```

Greedy search finds solutions quickly.
- Doesn’t always find best.
- Susceptible to false starts.
 - Chases good looking options that turn out to be bad.
- Only looks at current node. Ignores past!
- Also myopic (shortsighted).

For the 8-puzzle one good heuristic is:
- count tiles out of place.
Another is:
- Manhattan blocks’ distance
The latter works for other problems as well:
- Robot navigation.

© 1998 Morgan Kaufman Publishers
A* Search

- A* is very efficient search strategy.
- Basic idea is to combine uniform cost search and greedy search.
- We look at the cost so far and the estimated cost to goal.
- Gives heuristic f:
 \[f(n) = g(n) + h(n) \]
 where
 - $g(n)$ is path cost of n;
 - $h(n)$ is expected cost of cheapest solution from n.
- Aims to minimize overall cost.

General algorithm for A* search:
```plaintext
agenda = initial state; while agenda not empty do {
    take node from agenda such that
    \[ f(node) = \min \{ f(n) | n \text{ in agenda} \} \]
    where $f(n) = g(n) + h(n)$
    new nodes = apply operations to node;
    if goal state in new nodes then {
        return solution;
    } else add new nodes to agenda
}
```

- Considering the 8-puzzle (for the last time :-):
- We combine:
 - Path cost function:
 - number of moves.
 - Heuristic function:
 - tiles out of places.
- This gives the following search.
The optimality of A*

- A* is optimal in precise sense—it is guaranteed to find a minimum cost path to the goal.
- There are a set of conditions under which A* will find such a path:
 1. Each node in the graph has a finite number of children.
 2. All arcs have a cost greater than some positive ϵ.
 3. For all nodes in the graph $h(n)$ always underestimates the true distance to the goal.
- The key here is the third bullet — the notion of admissibility.
- We will express this by saying a heuristic $h(\cdot)$ is admissible if $h(n) \leq h_T(n)$.

More informed search

- IF two versions of A*, A_1^* and A_2^* use different functions h_1 and h_2.
- AND

 $h_1(n) < h_2(n)$

 for all non-goal nodes,
- THEN we say that A_2^* is more informed than A_1^*.
- The better informed A* is, the less nodes it has to expand to find the minimum cost path.

Iterative deepening A*

- When we do heuristic search, we search some portion of the full search space.
- "Focused breadth first search".
- So we can still hit intractability.
- Adapting iterative deepening can help us.
- Instead of a depth limit, we impose a cost limit, and do a depth first search until it is exceeded.
- Then we backtrack, and extend the limit if we don’t find the goal.
• The initial cost cut off is set to \(f(n_0) \).
• This is just the estimated cost of finding a solution \(b(n_0) \).
• This will never overestimate the cost, so is a good start point.
• If this cost-limit does not provide a solution, what is the next cost limit.
• Well, if the heuristic is a good one, the cost of the cheapest path to the goal will be the lowest \(f(n) \) of an unexpanded node.
• So we set the new cost bound to this.
• This, then is iterative deepening A* (IDA*).

Summary

• This lecture has looked at some techniques for refining the search space:
 – uniform cost search;
 – greedy search; and
 – A* search.
• When these work they explore just the relevant part of the search space.
• There are also techniques that go further than those we have studied.

• These techniques include:
 – Focussed Dynamic A* (called D*)
 – D* Lite
 – Delayed D*
 – Life-long planning A* (called LPA*)
 – PAO*
• There are three directions we will take from here:
 – Adversarial search
 – Learning the state space.
 – Adding in more knowledge about the domain.