today’s topics:

- heuristic search (part 2 of 2)
Recap

the heuristic search part 1 lecture introduced

- More advanced problem solving techniques:
 - Depth limited search
 - Iterative deepening
 - Bidirectional search

- These improved on basic techniques like breadth-first and depth-first search.
- However, they still aren’t powerful enough to give solutions for realistic problems.
- Are there more improvements we can make?
Aims of this lecture:

- To show how applying some knowledge of the problem can help.
- Introduce heuristics — rules of thumb.
- Introduce heuristic search: guided by rules of thumb which help to decide which node to expand:
 - uniform-cost search;
 - greedy search;
 - A* search.
Heuristic (Informed) Search

- Whatever search technique we use, *exponential time complexity*.
- Tweaks to the algorithm will not reduce this to polynomial.
- We need *problem specific knowledge to guide the search*.
- Simplest form of problem specific knowledge is *heuristic*.
- Usual implementation in search is via an *evaluation function* which indicates desirability of expanding node.
Uniform Cost Search

- Recall we have a path cost function,

\[g : \text{Nodes} \rightarrow R \]

which gives cost to each path.
- Why not expand the cheapest path first?
- Intuition: cheapest is likely to be best!
• General algorithm for uniform search:

agenda = initial state;
while agenda not empty do
{
 take node from agenda such that
 \[g(\text{node}) = \min \{ g(n) \mid n \text{ in agenda} \} \]
 new nodes = apply operations to node;
 if goal state in new nodes then {
 return solution;
 }
 else add new nodes to agenda
}
- Uniform cost search guaranteed to find cheapest solution assuming path costs grow monotonically.
- In other words, adding another step to the solution makes it more costly.
- If path costs don’t grow monotonically, then exhaustive search is required.
Once again we can illustrate this on the 8-puzzle:

\[
\begin{array}{ccc}
2 & 8 & 3 \\
1 & 6 & 4 \\
7 & 5 & \\
\end{array}
\quad \rightarrow \quad
\begin{array}{ccc}
1 & 2 & 3 \\
8 & 4 & \\
7 & 6 & 5 \\
\end{array}
\]

For this set up, the search of the space:
• Will happen in the following way.
• States would be expanded in the order:
 1. 1
 2. 2, 3, 4
 3. 5, 6, 7, 8, 9
 4. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
 5. ...
• Note that this is just like breadth first search (because the path costs are just the same).
• Instead, assume up/down moves cost 2 and left/right moves cost 1.
• States would be expanded in the order:
 1. 1
 2. 2, 3, 4
 3. 5
 4. 9
 5. 6, 7, 8
 6. …
Greedy Search

- Most heuristics estimate cost of cheapest path from node to solution.
- We have a *heuristic function*,
 \[
 h : \text{Nodes} \rightarrow \mathbb{R}
 \]
 which estimates the distance from the node to the goal.
- Example: In route finding, heuristic might be straight line distance from node to destination.
- Heuristic is said to be *admissible* if it never overestimates cheapest solution.
 Admissible = optimistic.
- Greedy search involves expanding node with cheapest expected cost to solution.
General algorithm for greedy search:

agenda = initial state;
while agenda not empty do
{
 take node from agenda such that
 h(node) = min { h(n) | n in agenda}
 new nodes = apply operations to node;
 if goal state in new nodes then {
 return solution;
 }
 else add new nodes to agenda
}
• Greedy search finds solutions quickly.
• Doesn’t always find best.
• Susceptible to false starts.
 – Chases good looking options that turn out to be bad.
• Only looks at current node. Ignores past!
• Also myopic (shortsighted).
• For the 8-puzzle one good heuristic is:
 – count tiles out of place.
• Another is:
 – *Manhattan blocks’ distance*
• The latter works for other problems as well:
 – Robot navigation.
A* Search

- A* is very efficient search strategy.
- Basic idea is to combine uniform cost search and greedy search.
- We look at the cost so far and the estimated cost to goal.
- Gives heuristic f:

$$f(n) = g(n) + h(n)$$

where
- $g(n)$ is path cost of n;
- $h(n)$ is expected cost of cheapest solution from n.
- Aims to minimise overall cost.
• General algorithm for A* search:

 agenda = initial state;
 while agenda not empty do {
 take node from agenda such that
 f(node) = min { f(n) | n in agenda}
 where f(n) = g(n) + h(n)
 new nodes = apply operations to node;
 if goal state in new nodes then {
 return solution;
 }
 else add new nodes to agenda
 }
• Considering the 8-puzzle (for the last time :-)):
 • We combine:
 – Path cost function:
 * number of moves.
 – Heuristic function:
 * tiles out of places.
 • This gives the following search.
The optimality of A*

• A* is optimal in precise sense—it is guaranteed to find a minimum cost path to the goal.
• There are a set of conditions under which A* will find such a path:
 1. Each node in the graph has a finite number of children.
 2. All arcs have a cost greater than some positive ϵ.
 3. For all nodes in the graph $h(n)$ always underestimates the true distance to the goal.
• The key here is the third bullet — the notion of *admissibility*.
• We will express this by saying a heuristic $h(\cdot)$ is admissible if
 \[h(n) \leq h_T(n) \]
More informed search

- IF two versions of A*, A_1^* and A_2^* use different functions h_1 and h_2,
- AND
 \[h_1(n) < h_2(n) \]
 for all non-goal nodes,
- THEN we say that A_2^* is more informed than A_1^*.
- The better informed A* is, the less nodes it has to expand to find the minimum cost path.
• As an example of "more informed" consider the 8-puzzle:
 – tiles out of place; and
 – Manhattan blocks distance.
• We need $h(n)$ to underestimate $h_T(n)$ to ensure admissibility.
• But, the closer the estimate, the easier it is to reject nodes which are not on the optimal path.
• This means less nodes need to be searched.
Iterative deepening A*

- When we do heuristic search, we search some portion of the full search space.
- "Focussed breadth first search".
- So we can still hit intractability.
- Adapting iterative deepening can help us.
- Instead of a depth limit, we impose a cost limit, and do a depth first search until it is exceeded.
- Then we backtrack, and extend the limit if we don’t find the goal.
• The initial cost cut off is set to $f(n_0)$.
• This is just the estimated cost of finding a solution $h(n_0)$.
• This will never overestimate the cost, so is a good start point.
• If this cost-limit does not provide a solution, what is the next cost limit.
• Well, if the heuristic is a good one, the cost of the cheapest path to the goal will be the lowest $f(n)$ of an unexpanded node.
• So we set the new cost bound to this.
• This, then is iterative deepening A* (IDA*).
Summary

- This lecture has looked at some techniques for refining the search space:
 - uniform cost search;
 - greedy search; and
 - A* search.
- When these work they explore just the relevant part of the search space.
- There are also techniques that go further than those we have studied.
• These techniques include:
 – Focussed Dynamic A* (called D*)
 – D* Lite
 – Delayed D*
 – Life-long planning A* (called LPA*)
 – PAO*

• There are three directions we will take from here:
 – Adversarial search
 – Learning the state space.
 – Adding in more knowledge about the domain.