
today: math operations and function arguments

• random numbers

• math operators

• data type conversion

• function arguments

cis1.5-spring2007-sklar-lecII.2 1

random numbers

• computers can generate “random” numbers, which is like picking a number by rolling dice

• there are two steps necessary for generating random numbers:

1. seeding the random number generator

2. picking the random number

• the seed is used to create a sequence of “pseudo random numbers”

you can always get the same sequence again if you use the same seed!

• the random numbers generated are integers (of type int)

• void srand(long seed)

is used to seed (initialize) the random number sequence

• int rand()

returns a random integer between 0 and RAND_MAX, where RAND_MAX is a constant

defined by the C language

• you can scale the result returned from rand() to get a number in the range you want

(e.g., 0..10)

cis1.5-spring2007-sklar-lecII.2 2

random numbers: example

// initialize random seed

srand(time(NULL));

// find random initial location

x = rand() % 10;

y = rand() % 10;

display();

cis1.5-spring2007-sklar-lecII.2 3

math operators

• the mathematical operators in C are:

+ unary plus

− unary minus

+ addition

− subtraction

∗ multiplication

/ division

% modulo

• there are also math functions defined in a standard C library called math.h

• these include, for example:

– double sqrt(double x)

– double pow(double x, double y)

– double sin(double x)

• these take arguments and return values, e.g.:

double f = sqrt(4.0);

cis1.5-spring2007-sklar-lecII.2 4

data type conversion

• remember we talked earlier about data types, like int and double and how much they

can be used to store integer (whole) or real numbers

• in C and C++, when you are doing math, you need to make sure that you are working

with numbers that are all the same data type

• internally, C converts everything to double and then does the math, and then converts

the result back to int if necessary

• but you have to explicitly tell the computer to make the conversion so that things are

converted the way you want

also, some compilers check to make sure that arguments are the right data types

• in order to convert explicitly, you put the data type you want to convert to in parenthesis

and put that before the value you want to convert, e.g.,:

double f = sqrt((double)4);

cis1.5-spring2007-sklar-lecII.2 5

math example

• modify the roomba program so that the robot starts in a random location

• pretend that the roomba’s charging station is located at position (0, 0);

extend the program so that it calculates the distance from the roomba’s current location

to its charging station;

some definitions will be helpful:

– Euclidean distance: d = sqrt(x2 + y2)

– Manhattan distance: d = x + y

• modify the program so that the initial location and the location of the charging station are

computed randomly;

how would you need to change the formulas above?

– Euclidean distance: d = sqrt((x1 − x0)
2 + (y1 − y0)

2)

– Manhattan distance: d = abs(x1 − x0) + abs(y1 − y0)

• how would you translate the formulas from math language to the C or C++ programming

language?

cis1.5-spring2007-sklar-lecII.2 6

functions and function arguments

• we have talked about functions and used them already in the first homework (e.g.,

display())

• we also talked briefly about the return statement

• the power of functions is that they can “take arguments” and “return values”

• this means you can use the same function code to perform the same tasks on different

values, e.g.,:

double f;

f = sqrt(4.0);

cout << "f = " << f << endl;

f = sqrt(15.7);

cout << "f = " << f << endl;

cis1.5-spring2007-sklar-lecII.2 7

function arguments

• you can write your own functions (like we did with display())

• you can also write your own functions so that they take arguments

• example:

int move(char c) {

if (c == ’F’) {

cout << "moving forward...\n";

y = y + 1;

}

return 0;

} // end of move()

• in this example, the function move() takes one argument c

• note that the function definition includes the data type of the argument in the header

• you can have multiple arguments, separated by commas, e.g.:

int moveSteps(char c, int num_steps) { ... }

cis1.5-spring2007-sklar-lecII.2 8

function return values

• we have used the statement return 0; to end all our functions (before the last curly

bracket })

• however, you can tell the function to return a value

• example:

int move(char c) {

if (c == ’F’) {

cout << "moving forward...\n";

y = y + 1;

}

return y;

} // end of move()

• note that the data type of the value returned must be the same as the data type of the

function

• you can define functions of any type, e.g.: char direction() { ... }

cis1.5-spring2007-sklar-lecII.2 9

