
today: functions

• what are functions and why to use them

• library and programmer-defined functions

• parameters and return values

• reading: textbook chapter 5, sections 1-4

cis1.5-spring2007-sklar-lecIII.1 1

advantages of functions

• modularity

– we can divide up a program into small, understandable pieces (kind of like steps in a

recipe)

– this makes the program easier to read

– and easier to debug (i.e., check and see if it works, and fix it if it doesn’t work)

• write once, use many times

– if we have a task that will be performed many times, we only have to define a function

once; then we can call (or invoke) the function as many times as we need it

– also, we can use parameters (or arguments) to use the function to perform the same

task on or with different data values

cis1.5-spring2007-sklar-lecIII.1 2

library functions

• we have already talked about built-in, or library, functions

• i.e., these are functions that come with the C++ or C language

• we have used the math C library:

– sqrt

– pow

• we have used the stdlib C library:

– srand

– rand

• we have used the iostream C++ library:

– iostream.cout

– iostream.cin

cis1.5-spring2007-sklar-lecIII.1 3

• we have used the fstream C++ library:

– ifstream.open

– ifstream.close

– ifstream.eof

– ofstream.open

– ofstream.close

– ofstream.eof

cis1.5-spring2007-sklar-lecIII.1 4

how functions work

• functions must be defined (or “declared”) and then they can be called (or “invoked”)

• in the file that contains a program, a function must be declared before it can be invoked

• you can declare a function “header” (see the next slide) first and then later list the

function definition; or you can simply put the function definition in the file before the

function is called...

• first example:

#include <iostream>

using namespace std;

int sayHello() { // define function

cout << "hello\n";

return 0;

}

int main() {

sayHello(); // call function

cis1.5-spring2007-sklar-lecIII.1 5

return 0;

}

• second example:

#include <iostream>

using namespace std;

int sayHello(); // declare function (header only)

int main() {

sayHello(); // call function

return 0;

}

int sayHello() { // define function

cout << "hello\n";

return 0;

}

cis1.5-spring2007-sklar-lecIII.1 6

components of a function definition

• header

– data type or void

– identifier

– argument list— contains formal parameters (also sometimes called dummy parameters)

• body

– starts with {

– contains statements that execute the task(s) of the function

– uses a return statement to return a value corresponding to the function’s data type

(unless the function is void, in which case there is no return statement or return

value)

– ends with }

cis1.5-spring2007-sklar-lecIII.1 7

function parameters

• call by value

this means that when a function is called, the value of any function parameters are

transferred to the inside of the function and used in there

• the name of the dummy parameter is what is used inside the function, and its initial value

is set to the value of the argument that is used when the function is called

• example:

#include <iostream>

using namespace std;

int sayHello(int n) { // n is a dummy parameter

int i;

for (i=0; i<n; i++) {

cout << "hello\n";

return 0;

}

}

cis1.5-spring2007-sklar-lecIII.1 8

int main() {

sayHello(3); // 3 is the value of the argument

return 0;

}

• when the example runs, the dummy parameter n inside the function sayHello will be set

to the value 3, because that is the value of the argument when the function is called from

the main program

cis1.5-spring2007-sklar-lecIII.1 9

programmer-defined functions

• as in the example on the previous slide, you can define your own functions

• you are not limited just to those functions already defined in the C and C++ languages!

• now the real fun begins!

• of course, we have already created functions in the first homework, but maybe you didn’t

know exactly what you were doing...

cis1.5-spring2007-sklar-lecIII.1 10

local variables

• so far, all the variables we have declared have been called global

• this is because we declared them outside of the main() or any other function

• but actually, you can declare variables locally, within the body of a function

• and this is more efficient than declaring variables globally

• the reason has to do with memory allocation, i.e., how much memory the computer uses

while your program is running

• when a function runs, the program allocates memory for that function; when the function

finishes, the program releases that memory so that it can be used again for something else

• so, local variables are only used inside the function, and they “go away” when the function

exits

• which is why return values are handy—because you can send a value from the function

back to the part of the program that called it; and that value does not go away when the

function finishes

cis1.5-spring2007-sklar-lecIII.1 11

• memory for global variables is allocated when the program starts, and the memory is not

released until the whole program finishes; so it is better to use local variables for storing

values that you only need to use some of the time that a program is running

cis1.5-spring2007-sklar-lecIII.1 12

return values

• as in the previous slide, return values are good because they are a way of sending a value

from inside a function back to the part of a program that called that function

• up until now, we have written functions that have a single return statement, typically

return 0

(which means that the return value is 0)

• but you can actually write a function that has multiple return statments if the function

contains branching statements

• example:

cis1.5-spring2007-sklar-lecIII.1 13

int sign(double x) {

if (x == 0) {

return 0;

}

else if (x > 0) {

return 1;

}

else { // x < 0

return -1;

}

} // end of sign()

• this example returns:

0 if the function argument is equal to zero,

1 if the function argument is positive, and

−1 if the function argument is negative

cis1.5-spring2007-sklar-lecIII.1 14

multiple function parameters

• you can write functions that have more than one parameter

• the parameters can be of any data type; they can even be different data types

• first example:

int add(int A, int B) {

int sum;

sum = A + B;

return sum;

} // end of add()

cis1.5-spring2007-sklar-lecIII.1 15

• second example:

int doMath(int A, int B, char op) {

int result;

if (op==’+’) {

result = A + B;

}

else if (op==’-’) {

result = A - B;

}

else if (op==’*’) {

result = A * B;

}

else {

result = -999;

}

return result;

} // end of doMath()

cis1.5-spring2007-sklar-lecIII.1 16

