
cis20.2

design and implementation of software applications II

spring 2008

session # I.2

software project management

topics:

• source code management and version control

• makefiles

cis20.2-spring2008-sklar-lecI.2 1

software development models.

• integrated development environment (IDE)

– integrate code editor, compiler, build environment, debugger

– graphical tool

– single or multiple languages

– VisualStudio, JCreator, Forte, ...

• Unix model

– individual tools, command-line

cis20.2-spring2008-sklar-lecI.2 2

source code management.

• problem: lots of people working on the same project

– source code (C, Perl, ...)

– documentation

– specification (protocol specs)

• mostly on different areas

• different versions

– released — maintenance only

– stable — about to be released, production use

– development, beta

• different hardware and OS versions

cis20.2-spring2008-sklar-lecI.2 3

configuration management.

• version control system

• there are many popular tools:

– CVS

– RCS

– SCCS

• collection of directories, one for each “module”

• release control

• version control

• there is a single master copy (“repository”) and local (developer) copies

cis20.2-spring2008-sklar-lecI.2 4

about rcs.

• it doesn’t build a system (alone)

• it isn’t project management (alone)

• all changes are isolated vs. single logical change

• it can help with bug fix tracking

• it can help with track change verification

• it doesn’t test program (regression testing)

• it is not a work flow or process model

cis20.2-spring2008-sklar-lecI.2 5

setting up a repository.

• create a directory for the repository:

unix$ mkdir RCS

which creates an RCS directory under your current working directory

cis20.2-spring2008-sklar-lecI.2 6

adding a file to the repository.

• use the “check in” command:

unix$ ci movie.c

RCS/movie.c,v <-- movie.c

enter description, terminated with single ’.’ or end of file:

NOTE: This is NOT the log message!

>> this file manipulates the movie database

>> .

initial revision: 1.1

done

• you’ll be asked to enter a description of the file you are adding to the repository

• you only have to do this the first time a file is checked in

cis20.2-spring2008-sklar-lecI.2 7

what’s in the directory now?

• the directory:

unix$ ls -lt RCS

total 8

-r-------- 1 sklar sklar 4338 Jan 28 11:27 movie.c,v

• notice that the file is only read-only by owner

cis20.2-spring2008-sklar-lecI.2 8

the RCS file...

head 1.1;

access;

symbols;

locks; strict;

comment @ * @;

1.1

date 2008.01.28.16.27.27; author sklar; state Exp;

branches;

next ;

desc

@this file manipulates the movie database

@

1.1

log

@Initial revision

@

text

@/* movie.c */

#include <stdio.h>

etc

cis20.2-spring2008-sklar-lecI.2 9

checking a file out of the repository.

• there are two modes:

– read-only

– read-write

• command for read-only:

unix$ co movie.c

RCS/movie.c,v --> movie.c

revision 1.1

done

• command for read-write:

unix$ co -l movie.c

RCS/movie.c,v --> movie.c

revision 1.1 (locked)

done

cis20.2-spring2008-sklar-lecI.2 10

locking files.

• checking out a file in read-write mode is called checking it out with a lock

• this means that only the user who checked out the file can check it back in and unlock the

file

• you can also lock a file that is already checked out:

unix$ rcs -l movie.c

• if the file is already locked by another user, you’ll be asked if you want to break the lock

• this can be bad...

cis20.2-spring2008-sklar-lecI.2 11

getting file information.

• the rlog command is used to get information about files in the repository

unix$ rlog movie.c

RCS file: RCS/movie.c,v

Working file: movie.c

head: 1.1

branch:

locks: strict

access list:

symbolic names:

keyword substitution: kv

total revisions: 1; selected revisions: 1

description:

this file manipulates the movie database

revision 1.1

date: 2008/01/28 16:27:27; author: sklar; state: Exp;

Initial revision

===

cis20.2-spring2008-sklar-lecI.2 12

finding out about locks.

• you can use rlog to find out which files are locked

• to find out which files are locked:

unix$ rlog -R -L RCS/*

RCS/movie.c,v

cis20.2-spring2008-sklar-lecI.2 13

checking changed files back in.

• once you make a change to a file (and test it), you should check the file back into the

repository

unix$ ci movie.c

RCS/movie.c,v <-- movie.c

new revision: 1.2; previous revision: 1.1

enter log message, terminated with single ’.’ or end of file:

>> added comments

>> .

done

• you’ll be asked to enter a message describing the changes you made

• if the file is unchanged, RCS is smart enough not to increment the revision number:

unix$ ci movie.c

RCS/movie.c,v <-- movie.c

file is unchanged; reverting to previous revision 1.1

done

cis20.2-spring2008-sklar-lecI.2 14

keeping the working directory clean.

• use the rcsclean command

• this removes from the current working directory all files that are checked out in read-only

mode but have not been changed since they were checked out

unix$ rcsclean

rm -f movie.h

cis20.2-spring2008-sklar-lecI.2 15

finding differences.

• the rcsdiff command is used to show the differences between the version in your current

working directory and the version that was last checked in to RCS

unix$ rcsdiff movie.c

===

RCS file: RCS/movie.c,v

retrieving revision 1.2

diff -r1.2 movie.c

4a5

> this program was developed by prof sklar.

cis20.2-spring2008-sklar-lecI.2 16

using with your makefile.

• it is handy to integrate RCS into your makefile

• add a DEFAULT rule that will check files out of RCS for the purpose of building your

project:

.DEFAULT:

co $(RCS)/$@,v

• add this line just after the SUFFIXES line

• you can also add rcsclean to your clean rule:

clean:

rcsclean

rm *.o

cis20.2-spring2008-sklar-lecI.2 17

ident

• you can record version information directly in your source code

• place a line like this:

static char const rcsid[] = "Id";

in the global declaration section of your source code files

• after you check the file in and check it out again, RCS will automatically expand the tag:

static char const rcsid[] =

"$Id: movie.c,v 1.5 2008/01/28 16:55:09 sklar Exp $";

• now you can use the rcsid variable in your program

• you can also use the ident command to see the values:

unix$ ident movie.c

movie.c:

$Id: movie.c,v 1.5 2008/01/28 16:55:09 sklar Exp $

cis20.2-spring2008-sklar-lecI.2 18

revision tagging.

• each revision increases rightmost number by one: 1.1, 1.2, ...

• more than one period implies branches

• versions of file = RCS revisions

• use the rcs command to set revisions and branches

• do man rcsfile for more information

• there’s also a script called rcsfreeze which is handy for these functions, but it is not a

standard part of RCS (unfortunately)

cis20.2-spring2008-sklar-lecI.2 19

what is make?

• utility typically used for building software packages that are comprised of many source files

• determines automatically which pieces need to be rebuilt

• uses an input file (usually called makefile or Makefile) which specifies rules and

dependencies for building each piece

• you can use any name for the makefile and specify it on the command line:

unix-prompt# make

unix-prompt# make -f myfile.mk

• first way (above) uses default (makefile or Makefile) as input file

• second way uses myfile.mk as input file

cis20.2-spring2008-sklar-lecI.2 20

make tutorial (1)

• Let’s begin by considering the simplest case of compiling a C program.

• Suppose that you have a C program called lab1.c.

• If you were going to compile this on the command line using the gcc compiler and send

the output to the default file a.out, you’d execute the following command:

unix-prompt# gcc lab1.c

• This is illustrated in the figure below:

a.outgcc −g lab1.clab1.c

cis20.2-spring2008-sklar-lecI.2 21

make tutorial (2)

• Now suppose you don’t want to use the default output file name, but instead you want to

name the output executable lab1.

• Then you would execute the following command:

unix-prompt# gcc lab1.c -o lab1

• This is illustrated in the figure below:

lab1lab1.c gcc −g lab1.c −o lab1

cis20.2-spring2008-sklar-lecI.2 22

make tutorial (3)

• Next, suppose that you have a more complicated case — you have two C source files

(hw1.c and inv.c), and you want to compile them and link them together to create one

executable program called hw1.

• This is a multi-step process. First, you need to compile each source file into object code:

unix-prompt# gcc -c hw1.c -o hw1.o

unix-prompt# gcc -c inv.c -o inv.o

The -c switch on the gcc command tells gcc to compile only and not link. So, after these

two commands are executed, you have two object code files (hw1.o and inv.o). These

files are not executable — they must be linked.

• We’ll assume that hw1.c refers to components in inv.c, indicating that the files must be

linked together. For example, inv.c contains the definition of a function called

printInventory(), and hw1.c contains a call to that function. Thus hw1.c needs

inv.c to resolve its “external references”. Similarly, hw1.c contains a main() function,

but inv.c doesn’t; so the files must be linked together — or at least, inv.c needs to be

linked to some file that contains a main().

cis20.2-spring2008-sklar-lecI.2 23

• The link step is as follows:

unix-prompt# gcc hw1.o inv.o -o hw1

• This is illustrated in the figure below:

gcc hw1.o inv.o −o hw1

files

executable
program

compile object code files link

hw1.c

inv.c gcc −g −c inv.c −o inv.o

gcc −g −c hw1.c −o hw1.o

hw1

hw1.o

inv.o

source code

cis20.2-spring2008-sklar-lecI.2 24

make tutorial (4)

• The advantage of using a makefile is that it will keep track of which files need to be

compiled when building an executable program that takes more than one source file.

• It is also easier to compile using make, because at the unix command line, all you have to

type is:

unix-prompt# make

• Note that sometimes you will also type a target as an argument to make, such as:

unix-prompt# make step1

cis20.2-spring2008-sklar-lecI.2 25

make tutorial (5)

• Just as above we started simple and added complexity, let’s start with a very simple

makefile and build from it. The figure below shows a simple example. The simple

makefile has two components: a target and a rule.

• When you type make at the unix prompt, the make utility reads the makefile and

executes the rule associated with the a.out target, namely it does exactly the same thing

that is done on make tutorial page (1).

rule

in here

target

a.out:
gcc −g lab1.c

there’s a tab

cis20.2-spring2008-sklar-lecI.2 26

make tutorial (6)

• As above in going from “make tutorial pages (1) to (2), we add an output file name to the

simple command, shown in the makefile in the figure below. The execution is the same.

• When you type make at the unix prompt, the make utility reads the makefile and

executes the rule associated with the lab1 target.

rule

in here

target

lab1:
gcc −g lab1.c −o lab1

there’s a tab

cis20.2-spring2008-sklar-lecI.2 27

make tutorial (7)

• In both of the simple makefile examples above, there is only one target. If there were

more than one target, then typing make with no arguments would cause the make utility

to execute the rule associated with the first target that appears in the file.

• For example, in the figure below:

– Typing make, would build target a.out.

– Typing make a.out, would also build target a.out.

– Typing make lab1, would build target lab1.

rule

rule

a.out:
gcc −g lab1.c

lab1:
gcc −g lab1.c −o lab1

first target

second target

cis20.2-spring2008-sklar-lecI.2 28

make tutorial (8)

• Okay, now let’s move on to building a program that has two source files, as in make

tutorial page (3).

• We add a target, hw1, to our makefile, as shown in the figure below. This new target has

three rules, which get executed consecutively, just as if they were typed on the unix

command line one after the other. To execute this target, type make hw1 on the unix

command line.

gcc −g lab1.c −o lab1

a.out:
gcc −g lab1.c

hw1:

gcc hw1.o inv.o −o hw1

gcc −g −c inv.c −o inv.o

gcc −g −c hw1.c −o hw1.o

target

first rule

second rule

third rule

lab1:

cis20.2-spring2008-sklar-lecI.2 29

make tutorial (9)

• Up to this point, we haven’t really taken advantage of the power of the make utility,

except to save ourselves some typing. Next, let’s look at some of the features of make.

We’ll start by introducing some special variables.

• The variable $@ is used inside a rule and it stands for the name of the target that the rule

is associated with. For example, we could replace the -o lab1 portion of the rule for the

lab1 target with -o $@. The meaning would be exactly the same. The figure below is the

same makefile on make tutorial page (8), but uses the $@ special variable.

special variable

a.out:
gcc −g lab1.c

hw1:

gcc −g −c inv.c −o inv.o

gcc −g −c hw1.c −o hw1.o

lab1:
gcc −g lab1.c −o $@

gcc hw1.o inv.o −o $@

special variable

cis20.2-spring2008-sklar-lecI.2 30

• Note that we don’t use this special variable with the first target’s rule, because the name

of the first target (a.out) is not speciifed in that target’s rule.

• Also note that we don’t use the special variable in the first two rules belonging to the hw1

target, again because the name of the target (hw1) is not specified in either of these rules.

Using the special variable does not change the way the makefile is executed.

• You would still, for example, type make lab1 to build the second target.

cis20.2-spring2008-sklar-lecI.2 31

make tutorial (10)

• Now let’s talk about dependencies, which is one of the really nifty things about make. A

dependency is something that tells make whether or not it needs to execute the rules

associated with a target. Dependencies are listed on the same line as a target, after the

colon (:) which follows the name of the target. Multiple dependencies are separated by

spaces.

• In the figure below, our makefile includes dependencies for all three targets.

first rule

a.out: lab1.c

hw1: hw1.c inv.c

target

lab1: lab1.c

target

dependency

dependency

target

dependencies

gcc −g lab1.c rule

gcc −g lab1.c −o $@ rule

gcc hw1.o inv.o −o $@

gcc −g −c inv.c −o inv.o

gcc −g −c hw1.c −o hw1.o

third rule

second rule

cis20.2-spring2008-sklar-lecI.2 32

• For the first target (a.out), the dependency listed is lab1.c.

• When make executes to build this target, it compares the “last modified” date of the

target file (if it exists) with the last modified date of its dependency. If the dependency is

newer than its target, then the target’s rule is executed. If a file bearing the same name as

the target doesn’t exist, then the target’s rule is executed as well. The same goes for the

second target. If the file lab1 exists and it is older than its dependency, lab1.c, or if

lab1 doesn’t exist, then the target’s rule is executed.

• For the third target (hw1), there are two dependencies: hw1.c and inv.c. If either one of

these files is newer than hw1, or if hw1 doesn’t exist, then the target’s three rules are all

executed.

• Adding dependencies doesn’t change the way the makefile is executed. You would still

type make a.out or make lab1 or make hw1 to build each of the three targets.

cis20.2-spring2008-sklar-lecI.2 33

make tutorial (11)

• Now, let’s examine this third target a little more closely. To be more precise, the target

itself, hw1, actually depends directly on hw1.o and inv.o, not the C source files.

• In addition, if you edit hw1.c but not inv.c since the last time you built the target, then

you really only need to recompile hw1.c, not both hw1.c and inv.c.

• So let’s split this up into its three constituent rules, as illustrated in the figure below.

rule

target

target

target

dependencies

a.out: lab1.c
gcc −g lab1.c

lab1: lab1.c
gcc −g lab1.c −o $@

hw1: hw1.o inv.o

hw1.o: hw1.c

inv.o: inv.c dependency

dependency

gcc hw1.o inv.o −o $@ rule

gcc −g −c hw1.c −o hw1.o

gcc −g −c inv.c −o inv.o

rule

cis20.2-spring2008-sklar-lecI.2 34

• Doing this adds two targets to the makefile. This means that in addition to being able to

type make a.out or make lab1 or make hw1 to build each of the three original targets,

you could also build either of the two “intermediate” targets by typing make hw1.o or

make inv.o.

• These are referred to as “intermediate” because building these two targets only results in

updated object code, not executable programs.

cis20.2-spring2008-sklar-lecI.2 35

make tutorial (12)

• You probably noticed in the figure on the previous page that the rules for the last two

targets are very similar. Indeed, they are identical except for the file names. This is where

default rules come in handy.

• In the figure below, the rule portions of the last two targets are removed and replaced by

the single default rule at the top of the file.

special variable

target

target

target

a.out: lab1.c
gcc −g lab1.c

lab1: lab1.c
gcc −g lab1.c −o $@

hw1: hw1.o inv.o

inv.o: inv.c dependency

.c.o:

.SUFFIXES:

default target

default suffixes
.SUFFIXES: .o .c

gcc hw1.o inv.o −o $@ rule

hw1.o: hw1.c dependency

gcc −g −c $*.c −o $*.o default rule

dependencies

cis20.2-spring2008-sklar-lecI.2 36

• The default rule has two parts to it:

1. The SUFFIXES define which file extensions have default targets associated with them.

2. The default target is listed with its associated default rule. In this example, the

default target gives a default rule for building any .o file out of a .c file.

• The default rule uses another special variable: $*. This variable stands for the filename

portion of the dependency that invoked the rule. In other words, if hw1.c invoked the rule

(because it was newer than its target hw1.o), then the special variable $* would take on

the value hw1. Similarly, if inv.c invoked the rule (because it was newer than its target

inv.o), then the special variable $* would take on the value inv.

• Note that these changes do not affect the way the makefile is executed. Default targets

cannot be built directly by specifying them on the command line, so we still have 5 targets

that can be built with this makefile; and each of these targets is specified in the same way

as in the figure on make tutorial page (11).

cis20.2-spring2008-sklar-lecI.2 37

make tutorial (13)

• Another feature of make is the ability to user-defined constants.

• The example shown in the figure below illustrates the use of three user-defined constants:

– CC (which stands for the C Compiler)

– LINK (which stands for the Linker)

– CCFLAGS (which contains the flags to be used when the C Compiler is invoked)

• Note that the C Compiler and the Linker are actually the same program (gcc), but

defining them separately provides the flexibility to use different programs for each if we

wanted to do so.

cis20.2-spring2008-sklar-lecI.2 38

inv.o: inv.c

a.out: lab1.c
gcc lab1.c

lab1: lab1.c

hw1: hw1.o inv.o

hw1.o: hw1.c

.c.o:

.SUFFIXES:

.SUFFIXES: .o .c

CCFLAGS = −g −c

CC = gcc
LINK = gcc

gcc lab1.c −o $@

constant definitions

$(CC) $(CCFLAGS) $*.c −o $*.o

use of constants

$(LINK) hw1.o inv.o −o $@

use of constant

cis20.2-spring2008-sklar-lecI.2 39

make tutorial (14)

• The last feature of make that we have used is the special variable $^, which is used in a

rule to stand for the list of a target’s dependencies.

• This illustrated in the figure below.

• When make executes the target where the special variable is indicated, the value of $^ is

replaced with hw1.o inv.o, the list of dependencies which belong to that rule’s target.

cis20.2-spring2008-sklar-lecI.2 40

use of special variable

a.out: lab1.c
gcc lab1.c

lab1: lab1.c

hw1: hw1.o inv.o

hw1.o: hw1.c

.c.o:

.SUFFIXES:

.SUFFIXES: .o .c

CCFLAGS = −g −c

CC = gcc
LINK = gcc

gcc lab1.c −o $@

$(CC) $(CCFLAGS) $*.c −o $*.o

$(LINK) $^ −o $@

inv.o: inv.c

cis20.2-spring2008-sklar-lecI.2 41

make: defining rules

• the syntax is:

<target> : <dependencies>

<tab><command1>

<tab><command2>

...

<tab><commandN>

• there must be a <tab> at the beginning of each command line

• for example:

foo.o : foo.c defs.h # rule for building foo.o

cc -c -g foo.c

cis20.2-spring2008-sklar-lecI.2 42

make: specifying targets

• you can specify a target on the command line:

unix-prompt# make -f myfile.mk install

• the default target is the first one in the makefile (i.e., if you don’t specify a target on the

command line)

• often you have the following targets:

– all

– clean

– install

cis20.2-spring2008-sklar-lecI.2 43

make: wildcards

• wildcard characters are *, ? and [...] are the same as in the Bourne shell

• variables are also like in the Bourne shell (i.e., begin with $)

• but be careful because environment variables are imported into make

• there are a number of automatic variables:

– $@ = the file name of the rule target

– $? = names of all dependencies that are newer than the target

– $^ = names of all dependencies

• you can also use F and D to get the file and directory (respectively) portions of full paths

• e.g., $(@D) and $(@F) return the directory and file names of the target

cis20.2-spring2008-sklar-lecI.2 44

make: example

• example:

LIB = $(HOME)/lib

INC = $(HOME)/include

BIN = $(HOME)/bin

RCS = RCS

CC = gcc

LINK = gcc

CCFLAGS = -c -g

• defines many variables

• which are refered to like this, e.g.: $(CC)

• notice use of $(HOME) which is read from the environment

cis20.2-spring2008-sklar-lecI.2 45

make: implicit rules

• implicit rules can be used to define a general way of building one type of file from another

• for example

.SUFFIXES:

.SUFFIXES: .o .c

.c.o:

$(CC) $(CCFLAGS) $*.c -o $*.o

• note use of variables

cis20.2-spring2008-sklar-lecI.2 46

make: dependencies

• it is good practice to list include files as dependencies

• for example:

hw4sklarserver: hw4sklar.o util.o

$(LINK) $(LDFLAGS) -o $@ $^

hw4sklar.o: hw4sklar.c hw4sklar.h

util.o: util.c util.h

• this will use the implicit rule to know how to build a .o file from a .c file

cis20.2-spring2008-sklar-lecI.2 47

