what is information systems?

- the field of information systems (IS) comprises the following:
 - a number of types of computer-based information systems
 - objectives
 - risks
 - planning and project management
 - organization
 - IS development life cycle
 - tools, techniques and methodologies
 - social effects
 - integrative models

topics:

- what is information systems?
- what is information?
- knowledge representation
- information retrieval

types of information systems

- informal
 - evolve from patterns of human behavior (can be complex)
 - not formalized (i.e., designed)
 - rely on “word of mouth” (“the grapevine”)
- manual
 - formalized but not computer based
 - historical handling of information in organizations, before computers (i.e., human “clerks” did all the work)
 - some organizations still use aspects of manual IS (e.g., because computer systems are expensive or don’t exist to replace specialized human skills)
- computer-based
 - automated, technology-based systems
 - typically run by an “IT” (information technology) department within a company or organization (e.g., ITS at BC)

computer-based information systems

- data processing systems (e.g., accounting, personnel, production)
- office automation systems (e.g., document preparation and management, database systems, email, scheduling systems, spreadsheets)
- management information systems (MIS) (e.g., produce information from data, data analysis and reporting)
- decision support systems (DSS) (e.g., extension of MIS, often with some intelligence, allow prediction, posing of “what if” questions)
- executive information systems (e.g., extension of DSS, contain strategic modeling capabilities, data abstraction, support high-level decision making and reporting, often have fancy graphics for executives to use for reporting to non-technical/non-specialized audiences)
why do organizations have information systems?

• to make operations efficient
• for effective management
• to gain a competitive advantage
• to support an organization’s long-term goals

IS development life cycle

• feasibility study
• systems investigation
• systems analysis
• systems design
• implementation
• review and maintenance

social effects of IS

• change management
• broad implementation (not just about software)
• education and training
• skill change
• societal and cultural change

integrative models

• computers in society
• the internet revolution (internet 2, web 2.0)
• "big brother"
• ubiquitous computing
what is information?

- definition comprises ideas from philosophy, psychology, signal processing, physics...
- OED:
 - information = “informing, telling; thing told, knowledge, items of knowledge, news”
 - knowledge = “knowing familiarity gained by experience; person’s range of information; a theoretical or practical understanding of; the sum of what is known”
- other ideas:
 - relating data to context
 - must be recorded
 - has potential to become knowledge
- what is the relationship between data and information and knowledge and intelligence??

intuitive notion of information (from Losee, 1997)

- information must be something, although its exact nature is not clear
- information must be “new” (repeating something old isn’t considered “information”... or is it?)
- information must be true (i.e., not “mis-information”)
- information must be about something
- note human-centered definition that emphasizes meaning and message

types of information

- can be differentiated by:
 - form
 - content
 - quality
 - associated information
- properties
 - can be communicated electronically (methods: broadcasting, networking)
 - can be duplicated and shared (issues: ownership, control, maintenance, correction)

human perspective

- cognitive processing
 - perception, observation, attention
 - reasoning, assimilating, interpreting, inferring
 - communicating
- knowledge, belief
 - belief = “an idea held on some support; an internally accepted statement, result of inductive processes combining observed facts with a reasoning process”
- does “information” require a human mind?
meaning versus form

- is the form of information the information itself? or another kind of information?
- is the meaning of a signal or message the signal or message itself?
- representation (from Norman 1993)
 - why do we write things down?
 - Socrates thought writing would obliteriate serious thought
 - sound and gestures fade away
 - artifacts help us reason
 - anything not present in a representation can be ignored (do you agree with that?)
 - things left out of a representation are often those things that are hard to represent, or we don’t know how to represent them

The Library of Babel, by Jorge Luis Borges (1941)

- a story about a universe comprised of an indefinite (possibly infinite) number of hexagonal rooms, each containing walls of bookshelves that contain books which, in turn contain all possible combinations of letters
- is this information? data? knowledge? intelligence?
- how is the internet like (or unlike) the library of babel?

information theory

- Claude Shannon, 1940’s, IBM
- studied communication and ways to measure information
- communication = producing the same message at its destination as at its source
- problem: noise can distort the message
- message is encoded between source (transmitter) and destination (receiver)

communication theory

- many disciplines: mass communication, media, literacy, rhetoric, sociology, psychology, linguistics, law, cognitive science, information science, engineering, medicine...
- human communication theory:
 do you understand what I mean when I say something?
- what does it mean to say a message is received? is received the same as understood?
- the conduit metaphor
- meaning: syntactic versus semantic
information theory today

- total annual information production including print, film, media, etc is between 1-2 Exabytes (10^{18}) per year
- how to we organize this???
- and remember, it accumulates!
- information hierarchy:
 - data → information → knowledge → intelligence

information retrieval

- information organization versus retrieval
- organization:
 - categorizing and describing information objects in ways that people can use them who need to use them
- retrieval:
 - being able to find the information objects you need when you need them
- two key concepts:
 - precision: did I find what I wanted?
 - recall: how quickly did I find it?
- ideally, we want to maximize both precision and recall—this is the primary goal of the field of information retrieval (IR)

IR assumptions

- information remains static
- query remains static
- the value of an IR solution is in how good the retrieved information meets the needs of the retriever
- are these good assumptions?
 - in general, information does not stay static; especially the internet
 - people learn how to make better queries
- problems with standard model on the internet:
 - “answer” is a list of hyperlinks that then need to be searched
 - answer list is apparently disorganized

IR process

- IR is iterative
- IR doesn’t end with the first answer (unless you’re “feeling lucky”…)
- because humans can recognize a partially useful answer; automated systems cannot always do that
- because human’s queries change as their understanding improves by the results of previous queries
- because sometimes humans get an answer that is “good enough” to satisfy them, even if initial goals of IR aren’t met
“berry-picking” model (from Bates 1989)

- interesting information is scattered like berries in bushes
- the eye of the searcher is continually moving
- new information may trigger new ideas about where to search
- searching is generally not satisfied by one answer

two parts of a process:
- search and retrieval
- analysis and synthesis of search results

search tactics and strategies
- tactics ⇒ short-term goals, single actions, single operators
- strategies ⇒ long-term goals, complex actions, combinations of operators (macros)

need to keep search on track by monitoring search
- check: compare next move with current “state”
- weigh: evaluate cost/benefit of next move/direction
- pattern: recognize common actions
- correct: fix mistakes
- record: keep track of where you’ve been (even wrong directions)

search tactics
- specify: be as specific as possible in terms you are looking for
- exhaust: use all possible elements in a query
- reduce: subtract irrelevant elements from a query
- parallel: use synonyms (“term” tactics)
- pinpoint: focus query
- block: reject terms

relevance — how can a retrieved document be considered relevant?
- it can answer original question exactly and completely
- it can partially answer the question
- it can suggest another source for more information
- it can provide background information for answering the question
- it can trigger the user to remember other information that will help answer the question and/or retrieve more information about the question

parametric search
- most documents have “text” and “meta-data”, organized in “fields”
- in parametric search, we can associate search terms with specific fields
- example: search for apartments in a certain geographic neighborhood within a certain price range of a certain size
- the data set can be organized using indexes to support parametric search
zone search

- a “zone” is an identified region within a document
- typically the document is “marked up” before you search
- content of a zone is free text (unlike parametric fields)
- zones can also be indexed
- example: search for a book with certain keyword in the title, last name in author and topic in body of document
- does this make the web a database? not really (which you’ll see when we get into database definitions next week)

scoring and ranking

- search results can either be \textbf{Boolean} (match or not) or \textbf{scored}
- scored results attempt to assign a quantitative value to how good the result is
- some web searches can return a \textbf{ranked} list of answers, ranked according to their score
- some scoring methods:
 - linear combination of zones (or fields)
 - incidence matrices

linear combination of zones

- assign a weight to each zone (or field) and evaluate:
 \[
 \text{score} = 0.6 \times (\text{Brooklyn} \in \text{neighborhood}) + 0.5 \times (3 \in \text{bedrooms}) + 0.4 \times (1000 = \text{price})
 \]
- problem:
 it is frequently hard for a user to assign a weighting that adequately or accurately reflects their needs/desires

incidence matrices

- \textit{recall} = document (or a zone or field in the document) is a binary vector \(X \in \{0, 1\}^n \)
- query is a vector
- score is overlap measure:
 \[
 |X \cap Y|
 \]
- example:
 \[
 \begin{array}{cccccc}
 \text{Antony} & \text{Julius Caesar} & \text{The Tempest} & \text{Hamlet} & \text{Othello} & \text{Macbeth} \\
 1 & 0 & 0 & 0 & 1 & \\
 1 & 0 & 1 & 0 & 0 & \\
 0 & 0 & 0 & 0 & 0 & \\
 0 & 0 & 0 & 0 & 0 & \\
 \end{array}
 \]
 score is sum of entries row (or column, depending on what the query is)
• problem: overlap measure doesn’t consider:
 – term frequency (how often does a term occur in a document)
 – term scarcity in collection (how infrequently does the term occur in all documents in
 the collection)
 – length of documents searched

• what about density?
 if a document talks about a term more, then shouldn’t it be a better match?

• what if we have more than one term?
 this leads to term weighting

– By this scoring measure, the top-scoring play is likely to be the one with the most
 “of” s — is this what we want?

• NOTE that in the IR literature, “frequency” typically means “count” (not really
 “frequency” in the engineering sense, which would be count normalized by document
 length...)

• term frequency (tf)
 – somehow we want to account for the length of the documents we are comparing

• collection frequency (cf)
 – the number of occurrences of a term in a collection (also called corpus)

• document frequency (df)
 – the number of documents in a collection (corpus) containing the term

• tf x idf or tf.idf
 – tf = term frequency
 – idf = inverse document frequency; could be 1/df, but more commonly computed as:

 \[
 idf_i = \log\left(\frac{n}{df_i}\right)
 \]

• in previous matrix, instead of 0 or 1 in each entry, put the number of occurrences of each
 term in a document

• this is called the “bag of words” (multiset) model

• problem:
 – score is based on syntactic count but not on semantic count
 – e.g.: The Red Sox are better than the Yankees.
 is the same as
 The Yankees are better than the Red Sox.
 (well, only in this example...)

• count versus frequency
 – search for documents containing “ides of march”
 – Julius Caesar has 5 occurrences of “ides”
 – No other play has “ides”
 – “march” occurs in over a dozen plays
 – All the plays contain “of”

– “weight” of term i occurring in document d (w_{i,d}) is then:
 \[
 w_{i,d} = tf_{i,d} \times idf_i = tf_{i,d} \times \log(n/df_i)
 \]
 where
 - tf_{i,d} = frequency of term i in document d
 - n = total number of documents in collection
 - df_i = number of documents in collection that contain term i

 – weight increases with the number of occurrences within a document
 – weight increases with the rarity of the term across the whole collection

• so now we recompute the matrix using the \(w_{i,d} \) formula for each entry in the matrix, and
 then we can do our ranking with a query
references

- Dr Phil Trinder, Heriot-Watt University, UK
 F29IF1 Database and Information Systems (Fall 2007)
 http://www.macs.hw.ac.uk/~trinder/DbInfSystems/

- Prof Ray Larson and Prof Marc Davis, UC Berkeley
 IS 202 Information Organization and Retrieval (Fall 2003)
 http://www.sims.berkeley.edu/academics/courses/is202/f03/

- Prof Christopher Manning and Prof Prabhakar Raghavan, Stanford University
 CS276 / LING 286 Information Retrieval and Web Mining (Fall 2006)
 http://www.stanford.edu/class/cs276/