
cis20.2

design and implementation of software applications II

spring 2008

session # III.3

knowledge representation

topics:

• knowledge representation

• production systems

• semantic networks

• frames

• scripts

• graph representations

• bayesian networks

cis20.2-spring2008-sklar-lecIII.3 1

knowledge representation

• Marvin Minsky (1963):

“AI is the science of making machines do things that would require intelligence if

done by [humans]”

• today we focus on knowledge representation (KR) using networks, including probabilistic

networks to represent relationships between pieces of knowledge

• knowledge representation focuses on designing specific mechanisms for representing the

knowledge in ways that are useful for AI techniques

• Ed Feigenbaum’s Knowledge Principle:

“. . . power exhibited . . . is primarily a consequence of the specialist knowledge

employed by the agent and only very secondarily related to . . . the power of the

[computer]”

“Our agents must be knowledge rich, even if they are methods poor.”

cis20.2-spring2008-sklar-lecIII.3 2

the role of knowledge

• knowledge about a domain allows problem solving to be focused, so that we don’t have to

perform exhaustive search (i.e., for an agent to decide what to do)

• explicit representations of knowledge allow a domain expert to understand the knowledge

a system has, add to it, edit it, and so on—this is called knowledge engineering

• comparatively simple algorithms can be used to reason with the knowledge and derive

“new” knowledge from it

• so, how do we represent knowledge in a form that a computer can use?

• here’s a list of desirable features:

– representational adequacy

∗ a KR scheme must be able to actually represent the knowledge appropriate to our

problem

∗ some KR schemes are better at some sorts of knowledge than others

∗ there is no one ideal KR scheme!

– inferential adequacy

∗ a KR scheme must allow us to make new inferences from old knowledge

cis20.2-spring2008-sklar-lecIII.3 3

∗ it must make inferences that are:

· sound—the new knowledge actually does follow from the old knowledge

for example, given two statements:

(1) Michael is a man.

(2) All men are mortal.

the inference “Simon is mortal” is not sound,

whereas the inference “Michael is mortal” is sound.

· complete—it should make all the right inferences

∗ soundness is usually easy to comply with; but completeness is very hard!

– inferential efficiency

∗ a KR scheme should be tractable—i.e., one should be able to make inferences from

it in reasonable (polynomial) time

∗ unfortunately, any KR scheme with interesting expressive power is not going to be

efficient

∗ often, the more general a KR scheme is, the less efficient it is...

∗ so one ends up using KR schemes that are tailored to problem domain; these are less

general, but more efficient

– well-defined syntax and semantics

∗ a KR scheme should have well-defined syntax—i.e., it should be possible to tell:

cis20.2-spring2008-sklar-lecIII.3 4

· whether any construction is “grammatically correct”

· how to read any particular construction—no ambiguity

∗ a KR scheme should have well-defined semantics—it should be possible to precisely

determine, for any given construction, exactly what its meaning is

∗ syntax is easy; semantics is hard!

– naturalness

∗ ideally, a KR scheme should closely correspond to our way of thinking, reading, and

writing

∗ a KR scheme should allow a knowledge engineer to read and check the knowledge

base (i.e., the database that contains the knowledge represented)

∗ again, the more general a KR scheme is, the less likely it is to be readable and

understandable...

cis20.2-spring2008-sklar-lecIII.3 5

production systems

• knowledge can be represented as a collection of production rules

• each rule has the form:

condition −→ action

which may be read

if condition then action

where the condition (i.e., antecedent) is a pattern

and the action (i.e., consequent) is an operation to be performed if rule fires (i.e., when

the rule is true)

• a “production system” is essentially a list of rules and it is used by matching a system’s

state against the conditions in the list

• an action can be something the agent does, or it can be an action that manipulates the

agent’s memory, such as adding a rule to its database

• the mechanism that fires rules is frequently called an inference engine

• example:

cis20.2-spring2008-sklar-lecIII.3 6

R1: IF user has feathers

THEN animal is a bird

R2: IF animal is a bird

THEN animal can fly

R3: IF animal can fly

THEN animal is not scared of heights

• given a set of rules like these, there are essentially two ways we can use them to generate

new knowledge:

– forward chaining—data driven: reasoning forward from conditions to actions

– backward chaining—goal driven: reasoning backward from goals back to facts

• sometimes the system has to make choices about which rules should fire, if more than one

is applicable at a given time—this is called “conflict resolution”, and there are a number of

approaches to this situation:

– most specific rule first (with most matching antecedents)

– most recent first (i.e., rule that became true most recently)

– user/programmer specified priorities

– use “meta-knowledge” (i.e., knowledge about knowledge..., which can be encoded into

the system)

cis20.2-spring2008-sklar-lecIII.3 7

semantic networks

• another way of representing knowledge is using network structures

• a semantic network is a “labelled graph” in which

– nodes represent objects, concepts, or situations (states)

– links represent relationships between objects

– inference occurs by traversing links

• key types of links:

– x
subset−→ y means “x is a kind of y” (⊂)

e.g., penguin
subset−→ bird

– x
member−→ y means “x is a y”

e.g., opus
member−→ penguin

– x
R−→ y means “x is R-related to y”

e.g., bill
friend
−→ opus

cis20.2-spring2008-sklar-lecIII.3 8

• binary relations are easy and natural to represent

• others kinds of relation are harder

• unary relations (properties), e.g., “Opus is small”

• three place relations, e.g., “Opus brings tequila to the party”

• some binary relations are problematic, e.g., “Opus is larger than Bill”

• quantified statements are very hard for semantic nets, e.g., “every dog has bitten a

postman” or “every dog has bitten every postman” (whereas these types of statements are

easy to represent in first-order logic)

• however, partitioned semantic nets can represent these

• example semantic net:

cis20.2-spring2008-sklar-lecIII.3 9

energy_source Office_machines

Wall_outlet

Robots Printers

Delivery Cleaning Laser_printers Ink_jet_printers

R2D2 Snoopy
Arc conventions:

Subset

Element

Function
© 1998 Morgan Kaufman Publishers

cis20.2-spring2008-sklar-lecIII.3 10

frames

• frames are a kind of structured knowledge representation mechanism

• all information relevant to a particular concept is stored in a “frame”, which resembles

something like an object in C++

• each frame has a number of “slots”

• each slot may be “filled” by:

– a value,

– a pointer (reference) to another frame,

– or a procedure (or function or method)

• slots may have default values associated with them

• frames are typically used to represent the properties of objects, and the relationships

between them

• frames may represent: generic concepts (e.g., classes) or specific items (e.g., objects)

• the most important kind of link between frames is the is-a relationship, which facilitates

reasoning about object properties and inheritance

cis20.2-spring2008-sklar-lecIII.3 11

• example:

Printers

subset_of: Office_machines

superset_of: {Laser_printers,
	 Ink_jet_printers}

energy_source: Wall_outlet

creator: John_Jones

date: 16_Aug_91

Frame name

Slots

Slot names Slot fillers

© 1998 Morgan Kaufman Publishers

• a computer can reason with frames simply by following the is-a links

cis20.2-spring2008-sklar-lecIII.3 12

scripts

• scripts are a variant of frames, for representing stereotypical sequences of events

• a script is thus a frame with a set of prescribed slots, for example:

– some initial conditions

– some final conditions

– some state description

– some actions

– some actors

• the structure of the script is heavily domain dependent, so some people think it is not a

very useful kind of system

• famous example: the restaurant script

cis20.2-spring2008-sklar-lecIII.3 13

graph representations

• a directed graph is a set of variables and a set of directed arcs between them

• a directed graph is acyclic if it is not possible to start at a node, follow the arcs in the

direction they point, and end up back at the starting node

• we will only talk about directed acyclic graphs

• A is the parent of B if there is a directed arc from A to B

• B is the child of A if A is the parent of B

• any node with no parents is known as a root of the graph

• any node with no children is known as a leaf of the graph

• the parents of node A and the parents of those parents, and the parents of those parents,

and so on, are the ancestors of A

• if A is an ancestor of B, then B is a descendent of A

• we say that there is a link between two nodes A and B if A is a parent of B or B is a

parent of A

cis20.2-spring2008-sklar-lecIII.3 14

• two nodes A and C in a graph have a path between them if it is possible to start at A and

follow a series of links through the graph to reach C

• note that in defining a path we ignore the direction of the arrows; in other words we are

considering the underlying undirected graph

• a graph is said to be singly-connected if it includes no pairs of nodes with more than one

path between them

• a graph which is not singly-connected is multiply-connected

• a singly-connected graph with one root is called a tree

• a singly-connected graph with several roots is called a polytree

• a polytree is sometimes called a forest

cis20.2-spring2008-sklar-lecIII.3 15

Bayesian networks

• a Bayesian network is defined by:

Definition 1.1 A Bayesian network is a directed acyclic graph where each variable is a

random variable with a finite set of mutually exclusive states. For every variable A there is

a probability function Pr(A | B1, . . . , Bn) where B1, . . . , Bn are the parents of A.

Note that for root nodes the probability function is just Pr(A).

• Bayesian networks are also known as probabilistic causal networks.

• we also have:

Definition 1.2 Given random variables A, B and C, A and C are conditionally

independent given B, if:

Pr(A | B) = Pr(A | B, C)

If B is empty, then A and C are independent in the sense we are used to.

• applying Bayes’ rule this means that:

Pr(C | B, A) =
Pr(A | C, B) Pr(C | B)

Pr(A | B)

cis20.2-spring2008-sklar-lecIII.3 16

=
Pr(A | B) Pr(C | B)

Pr(A | B)
= Pr(C | B)

• finally, we have:

Definition 1.3 Two variables in a causal network are d-separated if, for all paths between

A and B there is an intermediate variable V such that:

1. The connection is serial or diverging and there is hard evidence for V ; or

2. The connection is converging and there is no evidence for either V or any of its

descendants.

• Now the neat thing about Bayesian networks is that:

Theorem 1.1 If A and B are d-separated in a Bayesian network G, and evidence e is

entered, then:

Pr(A | B, e) = Pr(A | e)

cis20.2-spring2008-sklar-lecIII.3 17

• it is easy to spot conditional independencies from the graphical representation of the

Bayesian network

• it also makes it easy to show that:

Theorem 1.2 Given a graph which includes two d-separated nodes A and B, then

changes in the probability of A have no impact on the change in probability of B.

and this, in turn makes it easy to devise algorithms for computing the probabilities of

variables as evidence is obtained.

• another consequence of Theorem ?? is that the joint probability over all the variables in a

Bayesian network is just the product of all the conditional probabilities in the

• in other words

Theorem 1.3 If G is a Bayesian network which includes only the set of variables

U = {A1, . . . , Am}, then the joint probability distribution over U is:

Pr(U) =
∏

i
Pr(Ai | pa(Ai))

where pa(Ai) is the set of parents of Ai.

• what this means from the computational side is that provided we start at the root nodes,

for which we have unconditional probabilities, we can conceive of a message passing

algorithm to compute Pr(U).

cis20.2-spring2008-sklar-lecIII.3 18

