
cis20.2

design and implementation of software applications II

spring 2008

session # IV.2

design patterns and software testing

topics:

• design patterns

• software testing

• test scenarios

cis20.2-spring2008-sklar-lecIV.2 1

design patterns: overview

• one of the “hot topics” in the object-oriented software engineering community

• goal: to create a body of solutions to common problems in the area of software

development

• this includes common vocabulary, strategies/algorithms and code for re-use

• origins: Design Patterns: Elements of Reusable Object-Oriented Software, by

Gamma, Helm, Johnson and Vlissides

also called the “Gang of Four” or GoF

• history:

– initially used in Smalltalk to help novice programmers, as a “pattern language”

– later used in C++ as an “idiom”

– these ideas evolved into “design patterns”

cis20.2-spring2008-sklar-lecIV.2 2

design patterns: definition

• “A pattern is the abstraction from a concrete form which keeps recurring in specific

non-arbitrary contexts.” [Riehle and Zullinghoven, 1996]

• in software terms:

“A pattern is a named nugget of instructive information that captures the essential

structure and insight of a successful family of proven solutions to a recurring problem that

arises within a certain context and system of forces.” [Appleton, 2000]

• usually involve a modular architecture which is comprised of parts which together make a

whole; the patterns come in when constructing the modules

• a pattern is a three-part rule containing: context, problem and solution

or a pattern is a “thing” that happens in the world, the rule which tells how to create the

thing and when to create it [Gabriel]

cis20.2-spring2008-sklar-lecIV.2 3

types of patterns

• generative patterns are used to create something

• non-generative patterns are used to describe something that recurs, but don’t tell how to

create it

• generative patterns show how to create something and illustrate characteristics of good

(best) practice

• everything isn’t a pattern!

• a pattern must have the three parts (context, problem, solution) and it must recur!

• good patterns:

– solve a problem

– demonstrate a proven concept

– provide a non-obvious solution

– describe a relationship between modules and system structures

– contain a significant human component

cis20.2-spring2008-sklar-lecIV.2 4



• a pattern is not a “lesson learned”

• a pattern is a “best practice”

• we focus here on software design patterns, though many other types of patterns exist (like

organizational patterns, analysis patterns, etc)

cis20.2-spring2008-sklar-lecIV.2 5

elements of a pattern

• “Alexandrian form”

IF you find yourself in CONTEXT

for example EXAMPLES,

with PROBLEM,

entailing FORCES

THEN for some REASONS,

apply DESIGN FORM AND/OR RULE

to construct SOLUTION

leading to NEW CONTEXT and OTHER PATTERNS

• contain the following essential elements:

– name — meaningful name for the pattern; can include a classification

– problem — statement of the problem and its intent (goals and objectives it wishes to

obtain)

– context — preconditions under which problem and solution recur; i.e., applicability of

the pattern

cis20.2-spring2008-sklar-lecIV.2 6

– forces — description of relevant forces and constraints

– solution — static relationships and dynamic rules describing how to realize the desired

outcome

– examples — sample applications of the pattern

– resulting context — state of system after pattern has been applied

– rationale — justifying explanation of steps/rules in the pattern

– related patterns — relationships between this pattern and others in the same pattern

language/system

– known uses — known occurrences of the pattern and its aplicaiton within existing

systems; may overlap with examples, but may be more complex since “examples”

should be simple

cis20.2-spring2008-sklar-lecIV.2 7

forces

• generalize the kinds of criteria that software engineers use to justify designs and

implementations

• e.g., in algorithms, the main force to be resolved is efficiency (time complexity)

• but patterns deal with the larger, harder-to-measure, and conflicting sets of goals and

constraints encountered in the development of every artifact created

• examples:

– Correctness

∗ Completeness and correctness of solution

∗ Static type safety, dynamic type safety

∗ Multithreaded safety, liveness

∗ Fault tolerance, transactionality

∗ Security, robustness

– Resources

∗ Efficiency: performance, time complexity, number of messages sent, bandwidth

requirements

cis20.2-spring2008-sklar-lecIV.2 8



∗ Space utilization: number of memory cells, objects, threads, processes,

communication channels, processors, ...

∗ Incrementalness (on-demand-ness)

∗ Policy dynamics: Fairness, equilibrium, stability

– Structure

∗ Modularity, encapsulation, coupling, independence

∗ Extensibility: subclassibility, tunability, evolvability, maintainability

∗ Reusability, openness, composibility, portability, embeddability

∗ Context dependence

∗ Interoperability

∗ ... other “ilities” and “quality factors”

– Construction

∗ Understandability, minimality, simplicity, elegance.

∗ Error-proneness of implementation

∗ Coexistence with other software

∗ Maintainability

∗ Impact on/of development process

∗ Impact on/of development team structure and dynamics

cis20.2-spring2008-sklar-lecIV.2 9

∗ Impact on/of user participation

∗ Impact on/of productivity, scheduling, cost

– Usage

∗ Ethics of use

∗ Human factors: learnability, undoability, ...

∗ Adaptability to a changing world

∗ Aesthetics

∗ Medical and environmental impact

∗ Social, economic and political impact

∗ ... other impact on human existence”

cis20.2-spring2008-sklar-lecIV.2 10

qualities of patterns

• encapsulation and abstraction

– should encapsulate a well-defined problem

– should abstract domain knowledge and experience

• openness and variability

– should be open for extensions, in a wide variety of applications

• generativity and composability

– applying one pattern should generate the context for another...

• equilibrium

– should achieve a balance between forces and constraints

cis20.2-spring2008-sklar-lecIV.2 11

frameworks

• closely related to patterns

• design patterns can be used by frameworks but are more abstract than frameworks

• design patterns are smaller architecture elements than frameworks

• design patterns are more general than frameworks

• frameworks use “inverted flow of control” between its clients and itself

“don’t call us, we’ll call you”...

“leave the driving to us”...

cis20.2-spring2008-sklar-lecIV.2 12



patterns: cataloging and writing

• pattern catalog: collection of related patterns

• pattern system: set of related patterns with an underlying structure connecting the

patterns together

• a pattern system is more structured than a pattern catalog, which is more like a list

• “pattern mining”: looking for patterns in an existing system

• writing patterns is HARD

• patterns are not a silver bullet!

cis20.2-spring2008-sklar-lecIV.2 13

software testing

• “the process of executing a program with the intent of finding errors” [Myers 1979]

• physical systems tend to fail in a few, small (fixed) set of ways;

software systems tend to fail in many (strange) ways

• physical systems tend to fail due to manufacturer errors;

software systems tend to fail due to design errors

• physical systems tend to fail with age, usage;

software systems can fail at any time...

• even small modules can be computationally complex

• exhaustive testing is not tractable: a program that adds two 32-bit integers would take

hundreds of years to test exhaustively (264 distinct test cases)

• fixing bugs may introduce new (often more subtle) bugs

cis20.2-spring2008-sklar-lecIV.2 14

why test software?

• to improve quality

– bugs can be costly ($ and lives... remember examples of ariane and therac)

– quality implies conforming to design requirements

• for verification and validation

– funcionality (exterior quality)

– engineering (interior quality)

– adaptability (future quality)

• for reliability estimation

cis20.2-spring2008-sklar-lecIV.2 15

classifications

• by purpose:

– correctness testing

– performance testing

– reliability testing

– security testing

• by life-cycle phase:

– requirements phase testing

– design phase testing

– program phase testing

– evaluation test results

– installation phase testing

– acceptance testing

– maintenance testing

cis20.2-spring2008-sklar-lecIV.2 16



• by scope

– unit testing

– component testing

– integration testing

– system testing

cis20.2-spring2008-sklar-lecIV.2 17

correctness testing

• minimum requirement of software testing

• need to be able to tell correct from incorrect behavior

• “white-box” and “black-box” methods

• black-box testing

– also called “data driven” testing

– test data are derived from functional requirements

– testing involves providing inputs to a module and testing the resulting outputs; hence

the name “black box”

– only testing the functionality

• white-box testing

– also called “glass box” testing

– structure and flow of module being tested is visible

– test cases are derived from program structure

– some degree of exhaustion is desirable, e.g., executing every line of code at least once

cis20.2-spring2008-sklar-lecIV.2 18

• other methods: control flow testing, mutation testing, random testing

• control flow testing

– also called/includes loop testing and data-flow testing

– program flow is mapped in a flowchart

– code is tested according to this flow

– can be used to eliminate redundant or unused code

• mutation testing

– original program code is perturbed and result is many new programs

– all are tested—the most effective test cases/data are chosen based on which eliminate

the most mutant programs

– but this is (even more) exhaustive and intractable

• random testing

– test caes are chosen randomly

– cost effective, but won’t necessarily hit all the important cases

• combinations of above yield best results in terms of completeness/effectiveness of testing,

tractability and cost

cis20.2-spring2008-sklar-lecIV.2 19

performance testing

• e.g., make sure that software doesn’t take infinite time to run or require infinite resources

• performance evaluation considers:

– resource usage

e.g., network bandwidth requirements, CPU cycles, disk space, disk access operations,

memory usage

– throughput

– stimulus-response timing

– queue lengths

• benchmarking frequently used here

cis20.2-spring2008-sklar-lecIV.2 20



reliability testing

• determination of failure-free system operation

• dependable software does not fail in unexpected or catastrophic ways

• “robustness” means the degree to which software can function when it receives unexpected

inputs or within stressful conditions

• “stress testing” or “load testing” pushes the software/system beyond the typical limits to

see if/when it will fail

cis20.2-spring2008-sklar-lecIV.2 21

security testing

• refers to testing for flaws that can be exploited by security holes

• particularly relevant to software that runs on the internet

• simulated security attacks help test this category

cis20.2-spring2008-sklar-lecIV.2 22

testing automation

• software testing tools help cut costs of manual testing

• typically involve the use of test scripts

• which are also costly to create

• so are used in cases where they are less costly to create and run than manual testing

cis20.2-spring2008-sklar-lecIV.2 23

when to stop?

• never! (hehe)

• there are always two more bugs—the one you know about and the one you don’t...

• trade-offs between budget, time, quality

• choices must be made...

• alternatives?

– buggy software/systems?

– some kind(s) of testing is necessary

– “proofs” using formal methods

– do you think the use of design patterns may help reduce testing?

cis20.2-spring2008-sklar-lecIV.2 24



software testing: conclusions

• software testing is an art

• testing is more than just debugging

• testing is expensive

• complete testing is infeasible

• testing may not be the most effective way to improve software quality

cis20.2-spring2008-sklar-lecIV.2 25

test scenarios

• a scenario is a “hypothetical story used to help a person think through a complex problem

or system”

• the idea of “scenario planning” gained popularity in the 2nd half of the 1900’s

• can be useful for illustrating a point, as well as testing a system

• ideal scenario has five characteristics:

– a story that is

– motivating

– credible

– complex

– easy to evaluate

• storytelling is an art, but a good scenario is a good story!

• risks and problems:

– other approaches are better for testing early code

– not designed for coverage of an entire system

cis20.2-spring2008-sklar-lecIV.2 26

– often heavily documented and used repeatedly, but often expose design errors rather

than implementation (coding) errors

• scenario testing vs requirements analysis

– requirements analysis is used to create agreement about a system to be built; scenario

testing is used to predict problems with a system

– scenario testing only needs to point out problems, not solve them, reach conclusions or

make recommendations about what to do about them

– scenario testing does not make design trade-offs, but can expose consequences of

trade-offs

– scenario testing does not need to be exhaustive, only useful

cis20.2-spring2008-sklar-lecIV.2 27

creating test scenarios

• write life histories for objects in the system

• list possible users; analyze their interests and objectives

• list “system events” and “special events”

• list benefits and create end-to-end tasks to check them

• interview users about famous challenges and failures of the old system

• work alongside users to see how they work and what they do

• read aobut what systems like this are supposed to do

• study complaints about he predecessor to this system and/or its competitors

• create a mock business; treat it as real and process its data

(from Kaner article)

cis20.2-spring2008-sklar-lecIV.2 28


