
« 2.4.21.3 Problems Using the Perl DBI/DBD
Interface

3.1 Connecting to and Disconnecting from the
Server »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial

Chapter 3. Tutorial

Table of Contents [+/-]

3.1. Connecting to and Disconnecting from the Server
3.2. Entering Queries
3.3. Creating and Using a Database [+/-]

3.4. Getting Information About Databases and Tables
3.5. Using mysql in Batch Mode
3.6. Examples of Common Queries [+/-]

3.7. Queries from the Twin Project [+/-]

3.8. Using MySQL with Apache

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client program to
create and use a simple database. mysql (sometimes referred to as the “terminal monitor” or just “monitor”) is
an interactive program that allows you to connect to a MySQL server, run queries, and view the results. mysql
may also be used in batch mode: you place your queries in a file beforehand, then tell mysql to execute the
contents of the file. Both ways of using mysql are covered here.

To see a list of options provided by mysql, invoke it with the --help option:

shell> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is available to which
you can connect. If this is not true, contact your MySQL administrator. (If you are the administrator, you need to
consult the relevant portions of this manual, such as Chapter 5, MySQL Server Administration.)

This chapter describes the entire process of setting up and using a database. If you are interested only in
accessing an existing database, you may want to skip over the sections that describe how to create the
database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant sections of
the manual for more information on the topics covered here.

Previous / Next / Up / Table of Contents

User Comments

Add your own comment.

Top / Previous / Next / Up / Table of Contents
© 1995-2008 MySQL AB. All rights reserved.

The world's most popular open source database

« 3 Tutorial

3.2 Entering Queries »

Section Navigation [Toggle]

3 Tutorial
3.1 Connecting to and
Disconnecting from the Server
3.2 Entering Queries
3.3 Creating and Using a
Database
3.4 Getting Information About
Databases and Tables
3.5 Using mysql in Batch Mode
3.6 Examples of Common Queries
3.7 Queries from the Twin Project
3.8 Using MySQL with Apache

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.1 Connecting to and Disconnecting from the Server

3.1. Connecting to and Disconnecting from the Server

To connect to the server, you will usually need to provide a MySQL user name when you invoke
mysql and, most likely, a password. If the server runs on a machine other than the one where you log
in, you will also need to specify a host name. Contact your administrator to find out what connection
parameters you should use to connect (that is, what host, user name, and password to use). Once
you know the proper parameters, you should be able to connect like this:

shell> mysql -h host -u user -p
Enter password: ********

host and user represent the host name where your MySQL server is running and the user name of
your MySQL account. Substitute appropriate values for your setup. The ******** represents your
password; enter it when mysql displays the Enter password: prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p
Enter password: ********

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 25338 to server version: 5.0.56-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The mysql> prompt tells you that mysql is ready for you to enter commands.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply use the
following:

shell> mysql -u user -p

If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): Can't connect
to local MySQL server through socket '/tmp/mysql.sock' (2), it means that that MySQL
server daemon (Unix) or service (Windows) is not running. Consult the administrator or see the section of
Chapter 2, Installing and Upgrading MySQL that is appropriate to your operating system.

For help with other problems often encountered when trying to log in, see Section B.1.2, “Common Errors When
Using MySQL Programs”.

Some MySQL installations allow users to connect as the anonymous (unnamed) user to the server running on the
local host. If this is the case on your machine, you should be able to connect to that server by invoking mysql
without any options:

shell> mysql

After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the mysql> prompt:

mysql> QUIT

Bye

On Unix, you can also disconnect by pressing Control-D.

Most examples in the following sections assume that you are connected to the server. They indicate this by the
mysql> prompt.

Previous / Next / Up / Table of Contents

User Comments

Posted by Morten Simonsen on February 27 2007 12:14pm [Delete] [Edit]

I think it would be nice to include a link to the doc for adding users and doing admin-stuff (look at the doc in the PostgreSQL), since readers of this
doc actually is the administrator.

Add your own comment.

Top / Previous / Next / Up / Table of Contents
© 1995-2008 MySQL AB. All rights reserved.

The world's most popular open source database

« 3.1 Connecting to and Disconnecting from
the Server

3.3 Creating and Using a Database »

Section Navigation [Toggle]

3 Tutorial
3.1 Connecting to and
Disconnecting from the Server
3.2 Entering Queries
3.3 Creating and Using a
Database
3.4 Getting Information About
Databases and Tables
3.5 Using mysql in Batch Mode
3.6 Examples of Common Queries
3.7 Queries from the Twin Project
3.8 Using MySQL with Apache

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.2 Entering Queries

3.2. Entering Queries

Make sure that you are connected to the server, as discussed in the
previous section. Doing so does not in itself select any database to
work with, but that's okay. At this point, it's more important to find out
a little about how to issue queries than to jump right in creating tables,
loading data into them, and retrieving data from them. This section
describes the basic principles of entering commands, using several
queries you can try out to familiarize yourself with how mysql works.

Here's a simple command that asks the server to tell you its version
number and the current date. Type it in as shown here following the
mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+----------------+--------------+
| VERSION() | CURRENT_DATE |
+----------------+--------------+
| 5.0.7-beta-Max | 2005-07-11 |
+----------------+--------------+
1 row in set (0.01 sec)
mysql>

This query illustrates several things about mysql:

A command normally consists of an SQL statement followed by a semicolon. (There are some
exceptions where a semicolon may be omitted. QUIT, mentioned earlier, is one of them. We'll get to
others later.)

When you issue a command, mysql sends it to the server for execution and displays the results, then
prints another mysql> prompt to indicate that it is ready for another command.

mysql displays query output in tabular form (rows and columns). The first row contains labels for the
columns. The rows following are the query results. Normally, column labels are the names of the
columns you fetch from database tables. If you're retrieving the value of an expression rather than a
table column (as in the example just shown), mysql labels the column using the expression itself.

mysql shows how many rows were returned and how long the query took to execute, which gives you a
rough idea of server performance. These values are imprecise because they represent wall clock time
(not CPU or machine time), and because they are affected by factors such as server load and network
latency. (For brevity, the “rows in set” line is sometimes not shown in the remaining examples in this
chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here's another query. It demonstrates that you can use mysql as a simple calculator:

The world's most popular open source database

mysql> SELECT SIN(PI()/4), (4+1)*5;
+------------------+---------+
| SIN(PI()/4) | (4+1)*5 |
+------------------+---------+
| 0.70710678118655 | 25 |
+------------------+---------+
1 row in set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter multiple
statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+----------------+
| VERSION() |
+----------------+
| 5.0.7-beta-Max |
+----------------+
1 row in set (0.00 sec)

+---------------------+
| NOW() |
+---------------------+
| 2005-07-11 17:59:36 |
+---------------------+
1 row in set (0.00 sec)

A command need not be given all on a single line, so lengthy commands that require several lines are not a
problem. mysql determines where your statement ends by looking for the terminating semicolon, not by looking
for the end of the input line. (In other words, mysql accepts free-format input: it collects input lines but does not
execute them until it sees the semicolon.)

Here's a simple multiple-line statement:

mysql> SELECT
 -> USER()
 -> ,
 -> CURRENT_DATE;
+---------------+--------------+
| USER() | CURRENT_DATE |
+---------------+--------------+
| jon@localhost | 2005-07-11 |
+---------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a multiple-
line query. This is how mysql indicates that it has not yet seen a complete statement and is waiting for the rest.
The prompt is your friend, because it provides valuable feedback. If you use that feedback, you can always be
aware of what mysql is waiting for.

If you decide you do not want to execute a command that you are in the process of entering, cancel it by typing
\c:

mysql> SELECT
 -> USER()
 -> \c
mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to indicate that
mysql is ready for a new command.

The following table shows each of the prompts you may see and summarizes what they mean about the state
that mysql is in:

Prompt Meaning

mysql> Ready for new command.

-> Waiting for next line of multiple-line command.

'> Waiting for next line, waiting for completion of a string that began with a single quote (“'”).

"> Waiting for next line, waiting for completion of a string that began with a double quote (“"”).

`> Waiting for next line, waiting for completion of an identifier that began with a backtick (“`”).

/*> Waiting for next line, waiting for completion of a comment that began with /*.

In the MySQL 5.0 series, the /*> prompt was implemented in MySQL 5.0.6.

Multiple-line statements commonly occur by accident when you intend to issue a command on a single line, but
forget the terminating semicolon. In this case, mysql waits for more input:

mysql> SELECT USER()
 ->

If this happens to you (you think you've entered a statement but the only response is a -> prompt), most likely
mysql is waiting for the semicolon. If you don't notice what the prompt is telling you, you might sit there for a
while before realizing what you need to do. Enter a semicolon to complete the statement, and mysql executes
it:

mysql> SELECT USER()
 -> ;
+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+

The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting for
completion of a string). In MySQL, you can write strings surrounded by either “'” or “"” characters (for example,
'hello' or "goodbye"), and mysql lets you enter strings that span multiple lines. When you see a '> or ">
prompt, it means that you have entered a line containing a string that begins with a “'” or “"” quote character,
but have not yet entered the matching quote that terminates the string. This often indicates that you have
inadvertently left out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '>

If you enter this SELECT statement, then press ENTER and wait for the result, nothing happens. Instead of
wondering why this query takes so long, notice the clue provided by the '> prompt. It tells you that mysql
expects to see the rest of an unterminated string. (Do you see the error in the statement? The string 'Smith is
missing the second single quote mark.)

At this point, what do you do? The simplest thing is to cancel the command. However, you cannot just type \c
in this case, because mysql interprets it as part of the string that it is collecting. Instead, enter the closing quote
character (so mysql knows you've finished the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '> '\c
mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new command.

The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not completed a
backtick-quoted identifier.

It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter an
unterminated string, any further lines you type appear to be ignored by mysql — including a line containing
QUIT. This can be quite confusing, especially if you do not know that you need to supply the terminating quote
before you can cancel the current command.

Previous / Next / Up / Table of Contents

User Comments

Add your own comment.

Top / Previous / Next / Up / Table of Contents
© 1995-2008 MySQL AB. All rights reserved.

« 3.2 Entering Queries

3.3.1 Creating and Selecting a Database »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database

3.3. Creating and Using a Database

[+/-]

Once you know how to enter commands, you are ready to access a database.

Suppose that you have several pets in your home (your menagerie) and you would like to keep track of various
types of information about them. You can do so by creating tables to hold your data and loading them with the
desired information. Then you can answer different sorts of questions about your animals by retrieving data
from the tables. This section shows you how to:

Create a database

Create a table

Load data into the table

Retrieve data from the table in various ways

Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations in which a
similar type of database might be used. For example, a database like this could be used by a farmer to keep
track of livestock, or by a veterinarian to keep track of patient records. A menagerie distribution containing
some of the queries and sample data used in the following sections can be obtained from the MySQL Web site.
It is available in both compressed tar file and Zip formats at http://dev.mysql.com/doc/.

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
| tmp |
+----------+

The mysql database describes user access privileges. The test database often is available as a workspace
for users to try things out.

The list of databases displayed by the statement may be different on your machine; SHOW DATABASES does not
show databases that you have no privileges for if you do not have the SHOW DATABASES privilege. See
Section 11.5.4.8, “SHOW DATABASES Syntax”.

If the test database exists, try to access it:

mysql> USE test
Database changed

Note that USE, like QUIT, does not require a semicolon. (You can terminate such statements with a semicolon if
you like; it does no harm.) The USE statement is special in another way, too: it must be given on a single line.

The world's most popular open source database

You can use the test database (if you have access to it) for the examples that follow, but anything you create
in that database can be removed by anyone else with access to it. For this reason, you should probably ask
your MySQL administrator for permission to use a database of your own. Suppose that you want to call yours
menagerie. The administrator needs to execute a command like this:

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';

where your_mysql_name is the MySQL user name assigned to you and your_client_host is the host from
which you connect to the server.

Previous / Next / Up / Table of Contents

User Comments

Posted by Steven Ginzbarg on May 15 2006 5:56pm [Delete] [Edit]

I found the README.txt in the menagerie database download difficult to follow. Here is my revised version.

In what situations would one want to use one's command interpreter rather than the MySQL program? It seems
tedious to have to execute mysql and supply connection parameters for each command.

README.txt

This directory contains files that can be used to set up the menagerie database that is used in the tutorial chapter of
the MySQL Reference Manual.

First, you should create the database. In the mysql program, issue this statement:

mysql> CREATE DATABASE menagerie;

The examples below assume that you have unzipped menagerie.zip or menagerie.tar.gz to the C: drive creating a
temporary folder C:\menagerie containing the downloaded files.

To create the pet table:

mysql> use menagerie
Database changed
mysql> source c:/menagerie/cr_pet_tbl.sql

(Note the use of forward slashes for specifying paths at the mysql> prompt.)

To load the pet table, use this command in mysql:

mysql> LOAD DATA LOCAL INFILE 'c:/menagerie/pet.txt' INTO TABLE pet;

To add Puffball's record, use this command:

mysql> source c:/menagerie/ins_puff_rec.sql

To create the event table:

mysql> source c:/menagerie/cr_event_tbl.sql

To load the event table, use this command:

mysql> LOAD DATA LOCAL INFILE 'c:/menagerie/event.txt' INTO TABLE event;

The commands above were entered in the MySQL program. If you have created an account for yourself and granted

« 3.3 Creating and Using a Database

3.3.2 Creating a Table »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database :: 3.3.1 Creating and Selecting a
Database

3.3.1. Creating and Selecting a Database

If the administrator creates your database for you when setting up
your permissions, you can begin using it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer to your
database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is also true for table
names. (Under Windows, this restriction does not apply, although you must refer to databases and tables using
the same lettercase throughout a given query. However, for a variety of reasons, our recommended best
practice is always to use the same lettercase that was used when the database was created.)

Note

If you get an error such as ERROR 1044 (42000): Access denied for user
'monty'@'localhost' to database 'menagerie' when attempting to create a
database, this means that your user account does not have the necessary privileges to do so.
Discuss this with the administrator or see Section 5.4, “The MySQL Access Privilege System”.

Creating a database does not select it for use; you must do that explicitly. To make menagerie the current
database, use this command:

mysql> USE menagerie;

Database changed

Your database needs to be created only once, but you must select it for use each time you begin a mysql
session. You can do this by issuing a USE statement as shown in the example. Alternatively, you can select the
database on the command line when you invoke mysql. Just specify its name after any connection parameters
that you might need to provide. For example:

shell> mysql -h host -u user -p menagerie
Enter password: ********

Note that menagerie in the command just shown is not your password. If you want to supply your password
on the command line after the -p option, you must do so with no intervening space (for example, as -
pmypassword, not as -p mypassword). However, putting your password on the command line is not
recommended, because doing so exposes it to snooping by other users logged in on your machine.

Previous / Next / Up / Table of Contents

User Comments

Posted by Darl Kuhn on February 27 2006 4:46pm [Delete] [Edit]

You can use this command to view the current database that you're connected to:

mysql> select database();

The world's most popular open source database

« 3.3.1 Creating and Selecting a Database

3.3.3 Loading Data into a Table »

Section Navigation [Toggle]

3.3 Creating and Using a
Database
3.3.1 Creating and Selecting a
Database
3.3.2 Creating a Table
3.3.3 Loading Data into a Table
3.3.4 Retrieving Information from a
Table

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database :: 3.3.2 Creating a Table

3.3.2. Creating a Table

Creating the database is the easy part, but at this point it's empty, as
SHOW TABLES tells you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database
should be: what tables you need and what columns should be in each
of them.

You want a table that contains a record for each of your pets. This can be called the pet table, and it should
contain, as a bare minimum, each animal's name. Because the name by itself is not very interesting, the table
should contain other information. For example, if more than one person in your family keeps pets, you might
want to list each animal's owner. You might also want to record some basic descriptive information such as
species and sex.

How about age? That might be of interest, but it's not a good thing to store in a database. Age changes as time
passes, which means you'd have to update your records often. Instead, it's better to store a fixed value such as
date of birth. Then, whenever you need age, you can calculate it as the difference between the current date
and the birth date. MySQL provides functions for doing date arithmetic, so this is not difficult. Storing birth date
rather than age has other advantages, too:

You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If you
think this type of query is somewhat silly, note that it is the same question you might ask in the context
of a business database to identify clients to whom you need to send out birthday greetings in the current
week or month, for that computer-assisted personal touch.)

You can calculate age in relation to dates other than the current date. For example, if you store death
date in the database, you can easily calculate how old a pet was when it died.

You can probably think of other types of information that would be useful in the pet table, but the ones
identified so far are sufficient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
 -> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column values vary in
length. The lengths in those column definitions need not all be the same, and need not be 20. You can
normally pick any length from 1 to 65535, whatever seems most reasonable to you.

Note

Prior to MySQL 5.0.3, the upper limit was 255.) If you make a poor choice and it turns out later
that you need a longer field, MySQL provides an ALTER TABLE statement.

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or perhaps
'male' and 'female'. It is simplest to use the single characters 'm' and 'f'.

The world's most popular open source database

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| pet |
+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or what
types they have.

For more information about MySQL data types, see Chapter 9, Data Types.

Previous / Next / Up / Table of Contents

User Comments

Posted by Larry Blanchette on September 1 2005 6:21pm [Delete] [Edit]

you can use: show create table tablename, to get the DDL;

Posted by James Carrig on January 10 2006 7:44pm [Delete] [Edit]

While it is true that VARCHAR(20) means that the lengths in the columns "need not be 20," the more direct meaning
is that the maximum column length is 20. Here is actual output which may speak more clearly than words:

mysql> CREATE TABLE demo_varchar (words VARCHAR(5));
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO demo_varchar VALUES ('abcdef');
ERROR 1406 (22001): Data too long for column 'words' at row 1

mysql> INSERT INTO demo_varchar VALUES ('abcde');
Query OK, 1 row affected (0.38 sec)

Posted by Raymond Peck on April 6 2006 8:03pm [Delete] [Edit]

Another issue is that I assume for all or most underlying table implementations a packed string table is used, so only
as much space is used as required. Might want to add a link to more detailed info on the implications of various max
lengths, and any variations between MyISAM, InnoDB, etc.

Posted by jon doe on October 27 2006 5:32am [Delete] [Edit]

« 3.3.2 Creating a Table

3.3.4 Retrieving Information from a Table »

Section Navigation [Toggle]

3.3 Creating and Using a
Database
3.3.1 Creating and Selecting a
Database
3.3.2 Creating a Table
3.3.3 Loading Data into a Table
3.3.4 Retrieving Information from a
Table

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database :: 3.3.3 Loading Data into a Table

3.3.3. Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and
INSERT statements are useful for this.

Suppose that your pet records can be described as shown here.
(Observe that MySQL expects dates in 'YYYY-MM-DD' format; this
may be different from what you are used to.)

name owner species sex birth death

Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Bowser Diane dog m 1979-08-31 1995-07-29

Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a text file containing a
row for each of your animals, then load the contents of the file into the table with a single statement.

You could create a text file pet.txt containing one record per line, with values separated by tabs, and given in
the order in which the columns were listed in the CREATE TABLE statement. For missing values (such as
unknown sexes or death dates for animals that are still living), you can use NULL values. To represent these in
your text file, use \N (backslash, capital-N). For example, the record for Whistler the bird would look like this
(where the whitespace between values is a single tab character):

Whistler Gwen bird \N 1997-12-09 \N

To load the text file pet.txt into the pet table, use this command:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

Note that if you created the file on Windows with an editor that uses \r\n as a line terminator, you should use:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet

 -> LINES TERMINATED BY '\r\n';

(On an Apple machine running OS X, you would likely want to use LINES TERMINATED BY '\r'.)

You can specify the column value separator and end of line marker explicitly in the LOAD DATA statement if you
wish, but the defaults are tab and linefeed. These are sufficient for the statement to read the file pet.txt
properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled by
default. See Section 5.3.4, “Security Issues with LOAD DATA LOCAL”, for information on how to change this.

When you want to add new records one at a time, the INSERT statement is useful. In its simplest form, you

The world's most popular open source database

supply values for each column, in the order in which the columns were listed in the CREATE TABLE statement.
Suppose that Diane gets a new hamster named “Puffball.” You could add a new record using an INSERT
statement like this:

mysql> INSERT INTO pet

 -> VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);

Note that string and date values are specified as quoted strings here. Also, with INSERT, you can insert NULL
directly to represent a missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load your
records initially using several INSERT statements rather than a single LOAD DATA statement.

Previous / Next / Up / Table of Contents

User Comments

Posted by Doug Hall on February 17 2003 2:11pm [Delete] [Edit]

With Apple OS X: Use the terminal's drag and drop capability to insert the full path of the import file. This cuts down
on the amount of typing, if you don't want deal with adding the import file into MySQL's data folder.

example:
%mysql --local-infile -u <username> -p <DatabaseName>
Enter password:<password>
mysql>load data local infile '<drag input file here>' into table <TableName>;

Posted by Brandon Stout on September 22 2004 10:56pm [Delete] [Edit]

you can also drag windows files to the command window, but you'll need to change the backslashes to double-
backslashes or forwardslashes, and remove the c: at the beginning. If you have quotes around the path, you'll need to
delete them as well.

Posted by tsaiching wong on December 3 2004 6:18am [Delete] [Edit]

mysql> LOAD DATA LOCAL INFILE '<dir>/pet.txt' INTO TABLE pet FIELDS terminated by '<delimiter>';

--> just in case anyone experienced some discomfort following above instructions.

Posted by phil newcombe on December 23 2004 6:40pm [Delete] [Edit]

I used the full path name 'c:/<path to file>' and it worked fine, but my defaults aren't THE defaults. :-)

Posted by Mark Buchanan on January 6 2005 1:52am [Delete] [Edit]

When dragging file in Windows I found the quotes needed to be kept in.

Posted by Mike Hearn on January 17 2005 6:31pm [Delete] [Edit]

Doug Halls trick also works on Linux/BSD using the GNOME or KDE terminal emulator programs.

Posted by Dennis Verbunt on February 27 2005 2:06pm [Delete] [Edit]

I was having some problems getting this working in XP but got it working after checking my syntax multiple times
and then ENABLING local infiles.

Also after draging the file into the command window I had to replace the windows style backslashes with linux style
forward slashes.
mysql> LOAD DATA LOCAL INFILE "C:\Documents and Settings\Dennis\Desktop\menagerie\pet.txt" INTO TABL

« 3.3.3 Loading Data into a Table

3.3.4.1 Selecting All Data »

Section Navigation [Toggle]

3.3 Creating and Using a
Database
3.3.1 Creating and Selecting a
Database
3.3.2 Creating a Table
3.3.3 Loading Data into a Table
3.3.4 Retrieving Information from a
Table

3.3.4.1 Selecting All Data
3.3.4.2 Selecting Particular
Rows
3.3.4.3 Selecting Particular
Columns
3.3.4.4 Sorting Rows
3.3.4.5 Date Calculations
3.3.4.6 Working with NULL
Values
3.3.4.7 Pattern Matching
3.3.4.8 Counting Rows
3.3.4.9 Using More Than
one Table

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database :: 3.3.4 Retrieving Information from a Table

3.3.4. Retrieving Information from a Table

[+/-]

The SELECT statement is used to pull information from a table. The general form of the statement is:

SELECT what_to_select
FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to indicate “all
columns.” which_table indicates the table from which you want to retrieve data. The WHERE clause is
optional. If it is present, conditions_to_satisfy specifies one or more conditions that rows must
satisfy to qualify for retrieval.

Previous / Next / Up / Table of Contents

User Comments

Posted by [name withheld] on January 6 2006 7:03am [Delete] [Edit]

like : select name from friends where age>15;

Add your own comment.

Top / Previous / Next / Up / Table of Contents
© 1995-2008 MySQL AB. All rights reserved.

The world's most popular open source database

« 3.3.4 Retrieving Information from a Table

3.3.4.2 Selecting Particular Rows »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database :: 3.3.4 Retrieving Information from a
Table :: 3.3.4.1 Selecting All Data

3.3.4.1. Selecting All Data

The simplest form of SELECT retrieves everything from a table:

mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+---------+------+------------+------------+
Fluffy	Harold	cat	f	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
+----------+--------+---------+------+------------+------------+

This form of SELECT is useful if you want to review your entire table, for example, after you've just loaded it
with your initial data set. For example, you may happen to think that the birth date for Bowser doesn't seem
quite right. Consulting your original pedigree papers, you find that the correct birth year should be 1989, not
1979.

There are at least two ways to fix this:

Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and LOAD
DATA:

mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE 'pet.txt' INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

Previous / Next / Up / Table of Contents

User Comments

Posted by Vlad Dogaru on May 11 2006 4:33pm [Delete] [Edit]

Or, if, for instance, you added an extra blank line in pet.txt and ended up with an extra empty row, you can use:

DELETE FROM pet WHERE name='';

The world's most popular open source database

« 3.3.4.1 Selecting All Data

3.3.4.3 Selecting Particular Columns »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database :: 3.3.4 Retrieving Information from a
Table :: 3.3.4.2 Selecting Particular Rows

3.3.4.2. Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause from the
SELECT statement. But typically you don't want to see the entire table, particularly when it becomes large.
Instead, you're usually more interested in answering a particular question, in which case you specify some
constraints on the information you want. Let's look at some selection queries in terms of questions about your
pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change that you
made to Bowser's birth date, select Bowser's record like this:

mysql> SELECT * FROM pet WHERE name = 'Bowser';
+--------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as 'bowser', 'BOWSER', and
so forth. The query result is the same.

You can specify conditions on any column, not just name. For example, if you want to know which animals were
born during or after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |

The world's most popular open source database

| Whistler | Gwen | bird | NULL | 1997-12-09 | NULL |
| Slim | Benny | snake | m | 1996-04-29 | NULL |
+----------+-------+---------+------+------------+-------+

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both operators, it is a
good idea to use parentheses to indicate explicitly how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')
 -> OR (species = 'dog' AND sex = 'f');
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

Previous / Next / Up / Table of Contents

User Comments

Posted by [Xia Ren] (Chinese Name 任侠) on May 23 2004 8:49am [Delete] [Edit]

If you want to know which animals were cat OR dog AND her owner was Harold.
Following this instruction below :
mysql>SELECT * FROM pet WHERE (species = 'dog' OR species = 'cat') AND owner = 'harold';

Hope it helps......

Xia Ren comes from People's Republic of China.

Posted by Max Rosan on October 23 2004 7:19pm [Delete] [Edit]

Chat Messenger:

"mysql> DELETE FROM `messenger` WHERE time_row < (UNIX_TIMESTAMP() - 1800)"

time_row : integer

Delete all messages down 30 seconds

Posted by James Herdman on November 6 2005 2:33am [Delete] [Edit]

It should be noted that you can't do something like the following:

select * from pet where (species = 'dog' and species = 'cat');

Any given attribute can only have one value (this is an SQL property called "atomicity"). If you translated the above
SQL statement into English this makes more sense: "Show me all pets who are dogs and cats". A pet can't be both a
cat and a dog at the same time! A better question is "Show me all pets who are dogs or cats":

select * from pet where (species = 'dog' or species = 'cat');

Posted by Edward Lipchus on October 11 2006 8:35pm [Delete] [Edit]

Here's an example of how the placement of () can make a difference, compared to taking the default precedence
order of AND and OR -

mysql> select * from pet where species='cat' and sex='f' or owner='gwen';

« 3.3.4.2 Selecting Particular Rows

3.3.4.4 Sorting Rows »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database :: 3.3.4 Retrieving Information from a
Table :: 3.3.4.3 Selecting Particular Columns

3.3.4.3. Selecting Particular Columns

If you do not want to see entire rows from your table, just name the columns in which you are interested,
separated by commas. For example, if you want to know when your animals were born, select the name and
birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name | birth |
+----------+------------+
Fluffy	1993-02-04
Claws	1994-03-17
Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner |
+--------+
| Harold |
| Gwen |
| Harold |
| Benny |
| Diane |
| Gwen |
| Gwen |
| Benny |
| Diane |
+--------+

Notice that the query simply retrieves the owner column from each record, and some of them appear more
than once. To minimize the output, retrieve each unique output record just once by adding the keyword
DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner |
+--------+
| Benny |
| Diane |
| Gwen |
| Harold |
+--------+

The world's most popular open source database

You can use a WHERE clause to combine row selection with column selection. For example, to get birth dates
for dogs and cats only, use this query:

mysql> SELECT name, species, birth FROM pet
 -> WHERE species = 'dog' OR species = 'cat';
+--------+---------+------------+
| name | species | birth |
+--------+---------+------------+
Fluffy	cat	1993-02-04
Claws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
+--------+---------+------------+

Previous / Next / Up / Table of Contents

User Comments

Posted by Tanvir Alam (Mitul) Dhaka on October 1 2005 6:15am [Delete] [Edit]

select name sex from pet;
if u miss the ' , ' between name and sex it won't generate error.It will show only sex column.

Posted by Mukhtar Elhadi on October 1 2005 12:38pm [Delete] [Edit]

it is just an alias for name column not sex column

Posted by Alex Grim on December 13 2006 5:30am [Delete] [Edit]

It's like saying:
select cats AS 'dogs' from pets;

It'd return a table something like:

+--------+
dogs
kitty
meow
claws
+--------+

Posted by Linh Hoang on February 11 2007 8:44pm [Delete] [Edit]

To clarify the comma issue, the token or word after the column's name is a label for the column. Here is exactly what
it is:

mysql> SELECT name, species TYPE FROM pet WHERE species = 'dog' OR species = 'cat';

+--------+------+
| name | TYPE |
+--------+------+
Fluffy	cat
Claws	cat
Buffy	dog
Fang	dog
Bowser	dog
+--------+------+

« 3.3.4.3 Selecting Particular Columns

3.3.4.5 Date Calculations »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database :: 3.3.4 Retrieving Information from a
Table :: 3.3.4.4 Sorting Rows

3.3.4.4. Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no particular order. It's
often easier to examine query output when the rows are sorted in some meaningful way. To sort a result, use
an ORDER BY clause.

Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+
| name | birth |
+----------+------------+
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
+----------+------------+

On character type columns, sorting — like all other comparison operations — is normally performed in a case-
insensitive fashion. This means that the order is undefined for columns that are identical except for their case.
You can force a case-sensitive sort for a column by using BINARY like so: ORDER BY BINARY col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order, add the
DESC keyword to the name of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name | birth |
+----------+------------+
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
+----------+------------+

You can sort on multiple columns, and you can sort different columns in different directions. For example, to
sort by type of animal in ascending order, then by birth date within animal type in descending order (youngest
animals first), use the following query:

mysql> SELECT name, species, birth FROM pet

The world's most popular open source database

 -> ORDER BY species, birth DESC;
+----------+---------+------------+
| name | species | birth |
+----------+---------+------------+
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
Claws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
+----------+---------+------------+

Note that the DESC keyword applies only to the column name immediately preceding it (birth); it does not
affect the species column sort order.

Previous / Next / Up / Table of Contents

User Comments

Posted by [name withheld] on January 29 2002 6:30am [Delete] [Edit]

For an example of sorting based on a dynamically
generated column, see the example of sorting
based on age in section 3.3.4.5 "Date
Calculations".

Posted by Billy Kimble on June 2 2003 7:32am [Delete] [Edit]

If you want to explicity specify the order of which 'order by' comes back in, like if you had a priority field that had the
values "Low" "High" or "Medium" .. do this:

select * from tablename order by priority='High' DESC, priority='Medium' DESC, priority='Low" DESC;

Posted by noatun on November 3 2003 1:18am [Delete] [Edit]

Sometimes you might want to sort names. If you have First and Last names in one field, seperated by a blank, you
can do this by:
SELECT * FROM my_addressbook ORDER BY SUBSTRING_INDEX(name, ' ', -1) ASC

This works with John Adam, John F. Adam
but not with John F.Adam

Posted by Juan Ignacio Gomez on March 23 2004 4:45am [Delete] [Edit]

** Order By number Like this Number was a Text **
Some times you need to order by a column that contains numbers, but as
if it would be text, example:

Field Name: Numbers
Type: Integer(11)
Data:

+----------+
| numbers |

« 3.3.4.4 Sorting Rows

3.3.4.6 Working with NULL Values »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database :: 3.3.4 Retrieving Information from a
Table :: 3.3.4.5 Date Calculations

3.3.4.5. Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for example, to calculate
ages or extract parts of dates.

To determine how many years old each of your pets is, compute the difference in the year part of the current
date and the birth date, then subtract one if the current date occurs earlier in the calendar year than the birth
date. The following query shows, for each pet, the birth date, the current date, and the age in years.

mysql> SELECT name, birth, CURDATE(),
 -> (YEAR(CURDATE())-YEAR(birth))
 -> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
 -> AS age
 -> FROM pet;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Fluffy	1993-02-04	2003-08-19	10
Claws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
+----------+------------+------------+------+

Here, YEAR() pulls out the year part of a date and RIGHT() pulls off the rightmost five characters that
represent the MM-DD (calendar year) part of the date. The part of the expression that compares the MM-DD
values evaluates to 1 or 0, which adjusts the year difference down a year if CURDATE() occurs earlier in the
year than birth. The full expression is somewhat ungainly, so an alias (age) is used to make the output
column label more meaningful.

The query works, but the result could be scanned more easily if the rows were presented in some order. This
can be done by adding an ORDER BY name clause to sort the output by name:

mysql> SELECT name, birth, CURDATE(),
 -> (YEAR(CURDATE())-YEAR(birth))
 -> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
 -> AS age
 -> FROM pet ORDER BY name;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
Claws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10

The world's most popular open source database

Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
+----------+------------+------------+------+

To sort the output by age rather than name, just use a different ORDER BY clause:

mysql> SELECT name, birth, CURDATE(),
 -> (YEAR(CURDATE())-YEAR(birth))
 -> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
 -> AS age
 -> FROM pet ORDER BY age;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Chirpy	1998-09-11	2003-08-19	4
Puffball	1999-03-30	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Claws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You determine which
animals these are by checking whether the death value is NULL. Then, for those with non-NULL values,
compute the difference between the death and birth values:

mysql> SELECT name, birth, death,
 -> (YEAR(death)-YEAR(birth)) - (RIGHT(death,5)<RIGHT(birth,5))
 -> AS age
 -> FROM pet WHERE death IS NOT NULL ORDER BY age;
+--------+------------+------------+------+
| name | birth | death | age |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special value that
cannot be compared using the usual comparison operators. This is discussed later. See Section 3.3.4.6,
“Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation, year and day
are irrelevant; you simply want to extract the month part of the birth column. MySQL provides several
functions for extracting parts of dates, such as YEAR(), MONTH(), and DAYOFMONTH(). MONTH() is the
appropriate function here. To see how it works, run a simple query that displays the value of both birth and
MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name | birth | MONTH(birth) |
+----------+------------+--------------+
Fluffy	1993-02-04	2
Claws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9

Whistler	1997-12-09	12
Slim	1996-04-29	4
Puffball	1999-03-30	3
+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is April.
Then the month value is 4 and you can look for animals born in May (month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name | birth |
+-------+------------+
| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December. You cannot merely add one to the month
number (12) and look for animals born in month 13, because there is no such month. Instead, you look for
animals born in January (month 1).

You can write the query so that it works no matter what the current month is, so that you do not have to use the
number for a particular month. DATE_ADD() allows you to add a time interval to a given date. If you add a
month to the value of CURDATE(), then extract the month part with MONTH(), the result produces the month in
which to look for birthdays:

mysql> SELECT name, birth FROM pet
 -> WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one after using
the modulo function (MOD) to wrap the month value to 0 if it is currently 12:

mysql> SELECT name, birth FROM pet
 -> WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

Note that MONTH() returns a number between 1 and 12. And MOD(something,12) returns a number between
0 and 11. So the addition has to be after the MOD(), otherwise we would go from November (11) to January
(1).

Previous / Next / Up / Table of Contents

User Comments

Posted by Dan Fitzpatrick on May 28 2002 10:00am [Delete] [Edit]

In a business context, a more interesting query
for this sample db might be the one alluded to
earlier in the tutorial - select rows whose
birthdays are coming up soon to send out a
reminder...

Here is the way I did that:

SET @bdayThreshhold=150;

SELECT name, birth, CONCAT(((RIGHT(birth,5) <
RIGHT(CURRENT_DATE,5))

+ YEAR(CURRENT_DATE)), RIGHT(birth,6)) AS bday,

« 3.3.4.5 Date Calculations

3.3.4.7 Pattern Matching »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database :: 3.3.4 Retrieving Information from a
Table :: 3.3.4.6 Working with NULL Values

3.3.4.6. Working with NULL Values

The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing unknown
value” and it is treated somewhat differently from other values. To test for NULL, you cannot use the arithmetic
comparison operators such as =, <, or <>. To demonstrate this for yourself, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
| NULL | NULL | NULL | NULL |
+----------+-----------+----------+----------+

Clearly you get no meaningful results from these comparisons. Use the IS NULL and IS NOT NULL operators
instead:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
| 0 | 1 |
+-----------+---------------+

Note that in MySQL, 0 or NULL means false and anything else means true. The default truth value from a
boolean operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine which animals are
no longer alive using death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and last if you do
ORDER BY ... DESC.

A common error when working with NULL is to assume that it is not possible to insert a zero or an empty string
into a column defined as NOT NULL, but this is not the case. These are in fact values, whereas NULL means
“not having a value.” You can test this easily enough by using IS [NOT] NULL as shown:

mysql> SELECT 0 IS NULL, 0 IS NOT NULL, '' IS NULL, '' IS NOT NULL;
+-----------+---------------+------------+----------------+
| 0 IS NULL | 0 IS NOT NULL | '' IS NULL | '' IS NOT NULL |
+-----------+---------------+------------+----------------+
| 0 | 1 | 0 | 1 |
+-----------+---------------+------------+----------------+

Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact NOT
NULL. See Section B.1.5.3, “Problems with NULL Values”.

Previous / Next / Up / Table of Contents

The world's most popular open source database

« 3.3.4.6 Working with NULL Values

3.3.4.8 Counting Rows »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database :: 3.3.4 Retrieving Information from a
Table :: 3.3.4.7 Pattern Matching

3.3.4.7. Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching based on extended
regular expressions similar to those used by Unix utilities such as vi, grep, and sed.

SQL pattern matching allows you to use “_” to match any single character and “%” to match an arbitrary number
of characters (including zero characters). In MySQL, SQL patterns are case-insensitive by default. Some
examples are shown here. Note that you do not use = or <> when you use SQL patterns; use the LIKE or NOT
LIKE comparison operators instead.

To find names beginning with “b”:

mysql> SELECT * FROM pet WHERE name LIKE 'b%';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with “fy”:

mysql> SELECT * FROM pet WHERE name LIKE '%fy';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a “w”:

mysql> SELECT * FROM pet WHERE name LIKE '%w%';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

To find names containing exactly five characters, use five instances of the “_” pattern character:

mysql> SELECT * FROM pet WHERE name LIKE '_____';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The world's most popular open source database

The other type of pattern matching provided by MySQL uses extended regular expressions. When you test for a
match for this type of pattern, use the REGEXP and NOT REGEXP operators (or RLIKE and NOT RLIKE, which
are synonyms).

Some characteristics of extended regular expressions are:

“.” matches any single character.

A character class “[...]” matches any character within the brackets. For example, “[abc]” matches “a”,
“b”, or “c”. To name a range of characters, use a dash. “[a-z]” matches any letter, whereas “[0-9]”
matches any digit.

“*” matches zero or more instances of the thing preceding it. For example, “x*” matches any number of
“x” characters, “[0-9]*” matches any number of digits, and “.*” matches any number of anything.

A REGEXP pattern match succeeds if the pattern matches anywhere in the value being tested. (This
differs from a LIKE pattern match, which succeeds only if the pattern matches the entire value.)

To anchor a pattern so that it must match the beginning or end of the value being tested, use “^” at the
beginning or “$” at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously are rewritten here
to use REGEXP.

To find names beginning with “b”, use “^” to match the beginning of the name:

mysql> SELECT * FROM pet WHERE name REGEXP '^b';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

If you really want to force a REGEXP comparison to be case sensitive, use the BINARY keyword to make one of
the strings a binary string. This query matches only lowercase “b” at the beginning of a name:

mysql> SELECT * FROM pet WHERE name REGEXP BINARY '^b';

To find names ending with “fy”, use “$” to match the end of the name:

mysql> SELECT * FROM pet WHERE name REGEXP 'fy$';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a “w”, use this query:

mysql> SELECT * FROM pet WHERE name REGEXP 'w';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in the
previous query to put a wildcard on either side of the pattern to get it to match the entire value like it would be if
you used an SQL pattern.

To find names containing exactly five characters, use “^” and “$” to match the beginning and end of the name,
and five instances of “.” in between:

mysql> SELECT * FROM pet WHERE name REGEXP '^.....$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the {n} (“repeat-n-times”) operator:

mysql> SELECT * FROM pet WHERE name REGEXP '^.{5}$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

Section 10.4.2, “Regular Expressions”, provides more information about the syntax for regular expressions.

Previous / Next / Up / Table of Contents

User Comments

Posted by Angie Ahl on October 14 2005 12:23pm [Delete] [Edit]

Note for regular users of Regex. MySQL doesn't seem to support use of ? as a greedy operator.

ie use this:

UPDATE pages SET sitesection = 'Softwarey' WHERE pages.path REGEXP '^/for_sale/[^/]*\\.html';

NOT

UPDATE pages SET sitesection = 'Softwarey' WHERE pages.path REGEXP '^/for_sale/[^/]*?\\.html';

Posted by Joao Santos on November 5 2005 10:08pm [Delete] [Edit]

In reply to the previews comment.

I believe that what you have in your example is a PERL extension which is not part of the POSIX specification for
regular expressions and is not important unless you need to extract the matched substrings (which is not the case).

Posted by Brian Gorby on February 23 2006 6:25pm [Delete] [Edit]

Match a correctly-formatted email address:

RLIKE
'^[[:alnum:][.period.][.hyphen.][.underscore.]]+@([[:alnum:][.hyphen.][.underscore.]]+[.period.])+[[:alnum:][.hyphen.]]{2,3}$

Posted by Dan Stevens on April 11 2006 9:40am [Delete] [Edit]

« 3.3.4.7 Pattern Matching

3.3.4.9 Using More Than one Table »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database :: 3.3.4 Retrieving Information from a
Table :: 3.3.4.8 Counting Rows

3.3.4.8. Counting Rows

Databases are often used to answer the question, “How often does a certain type of data occur in a table?” For
example, you might want to know how many pets you have, or how many pets each owner has, or you might
want to perform various kinds of census operations on your animals.

Counting the total number of animals you have is the same question as “How many rows are in the pet table?”
because there is one record per pet. COUNT(*) counts the number of rows, so the query to count your animals
looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
| 9 |
+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to find out
how many pets each owner has:

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
Benny	2
Diane	2
Gwen	3
Harold	2
+--------+----------+

Note the use of GROUP BY to group all records for each owner. Without it, all you get is an error message:

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT(),...)
with no GROUP columns is illegal if there is no GROUP BY clause

COUNT() and GROUP BY are useful for characterizing your data in various ways. The following examples show
different ways to perform animal census operations.

Number of animals per species:

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+
bird	2
cat	2
dog	3
hamster	1
snake	1

The world's most popular open source database

+---------+----------+

Number of animals per sex:

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex | COUNT(*) |
+------+----------+
NULL	1
f	4
m	4
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	NULL	1
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous query, when
performed just on dogs and cats, looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet
 -> WHERE species = 'dog' OR species = 'cat'
 -> GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
cat	f	1
cat	m	1
dog	f	1
dog	m	2
+---------+------+----------+

Or, if you wanted the number of animals per sex only for animals whose sex is known:

mysql> SELECT species, sex, COUNT(*) FROM pet
 -> WHERE sex IS NOT NULL
 -> GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1

| snake | m | 1 |
+---------+------+----------+

Previous / Next / Up / Table of Contents

User Comments

Posted by Michael Dibbets on April 28 2005 6:42pm [Delete] [Edit]

For example, this is a table of yours:

---ID---	---Amount--
X:183812	---$3.00---
00391123	---$4.00---
X:203985	---$0.00---

And you wish to select all ID's with an X: in front of it, but you have like 10000 of them, but you need to know how
many you have, without having to use the php function mysql_numrows after a mysql_query, because that would
mean that all the data is loaded into memory, held ready by the mysql server... that's a bit of a memory hog.
Then use this code(only for php, modify to your own liking)

$test1 = mysql_query("SELECT COUNT(*) FROM [tablename] WHERE `ID` LIKE 'X:%'");
$test2 = mysql_fetch_row($test1);
echo "$test2[0]";

Just my 2 cents ;-)

Michael

Posted by Patrick Mineault on August 10 2005 7:22pm [Delete] [Edit]

If you are using SELECT DISTINCT on a complex join clause, you might be stumped to find the count without
returning the whole recordset. For example:

SELECT DISTINCT COUNT(*) AS theCount FROM table1, table2 WHERE table1.user_id = table2.user_id

Will not return the same number for 'theCount' as you would have using mysql_num_rows and:

SELECT DISTINCT table1.user_id FROM table1, table2 WHERE table1.user_id = table2.user_id

This is because DISTINCT affects the user_id, not the count. If you try something like:

SELECT DISTINCT table1.user_id, COUNT(*) AS theCount FROM table1, table2 WHERE table1.user_id =
table2.user_id

Then you'll get an error saying there's no GROUP BY clause. The key is to collapse all of the rows using GROUP BY
NULL:

SELECT DISTINCT table1.user_id, COUNT(*) AS theCount FROM table1, table2 WHERE table1.user_id =
table2.user_id GROUP BY NULL

Posted by Sherzod Ruzmetov on October 4 2005 5:41am [Delete] [Edit]

Regarding the DISTINCT with COUNT() on joins, try the following instead. It works for me:

SELECT COUNT(DISTINCT table_name.rowname) FROM table_name WHERE

Posted by negnin on January 10 2007 4:58pm [Delete] [Edit]

If you use distinct and joins and just want a count, you can also put your complete query between parentheses and

« 3.3.4.8 Counting Rows

3.4 Getting Information About Databases and
Tables »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.3 Creating and Using a Database :: 3.3.4 Retrieving Information from a
Table :: 3.3.4.9 Using More Than one Table

3.3.4.9. Using More Than one Table

The pet table keeps track of which pets you have. If you want to
record other information about them, such as events in their lives like visits to the vet or when litters are born,
you need another table. What should this table look like? It needs:

To contain the pet name so that you know which animal each event pertains to.

A date so that you know when the event occurred.

A field to describe the event.

An event type field, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
 -> type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it's easiest to load the initial records by creating a tab-delimited text file containing the
information:

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1 male

Buffy 1993-06-23 litter 5 puppies, 2 female, 3 male

Buffy 1994-06-19 litter 3 puppies, 3 female

Chirpy 1999-03-21 vet needed beak straightened

Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew toy

Claws 1998-03-17 birthday Gave him a new flea collar

Whistler 1998-12-09 birthday First birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;

Based on what you have learned from the queries that you have run on the pet table, you should be able to
perform retrievals on the records in the event table; the principles are the same. But when is the event table
by itself insufficient to answer questions you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to calculate
ages from two dates. The litter date of the mother is in the event table, but to calculate her age on that date
you need her birth date, which is stored in the pet table. This means the query requires both tables:

mysql> SELECT pet.name,

The world's most popular open source database

 -> (YEAR(date)-YEAR(birth)) - (RIGHT(date,5)<RIGHT(birth,5)) AS age,
 -> remark
 -> FROM pet INNER JOIN event
 -> ON pet.name = event.name
 -> WHERE event.type = 'litter';
+--------+------+-----------------------------+
| name | age | remark |
+--------+------+-----------------------------+
Fluffy	2	4 kittens, 3 female, 1 male
Buffy	4	5 puppies, 2 female, 3 male
Buffy	5	3 puppies, 3 female
+--------+------+-----------------------------+

There are several things to note about this query:

The FROM clause joins two tables because the query needs to pull information from both of them.

When combining (joining) information from multiple tables, you need to specify how records in one table
can be matched to records in the other. This is easy because they both have a name column. The query
uses ON clause to match up records in the two tables based on the name values.

The query uses an INNER JOIN to combine the tables. An INNER JOIN allows for rows from either table
to appear in the result if and only if both tables meet the conditions specified in the ON clause. In this
example, the ON clause specifies that the name column in the pet table must match the name column in
the event table. If a name appears in one table but not the other, the row will not appear in the result
because the condition in the ON clause fails.

Because the name column occurs in both tables, you must be specific about which table you mean when
referring to the column. This is done by prepending the table name to the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself, if you
want to compare records in a table to other records in that same table. For example, to find breeding pairs
among your pets, you can join the pet table with itself to produce candidate pairs of males and females of like
species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
 -> FROM pet AS p1 INNER JOIN pet AS p2
 -> ON p1.species = p2.species AND p1.sex = 'f' AND p2.sex = 'm';
+--------+------+--------+------+---------+
| name | sex | name | sex | species |
+--------+------+--------+------+---------+
Fluffy	f	Claws	m	cat
Buffy	f	Fang	m	dog
Buffy	f	Bowser	m	dog
+--------+------+--------+------+---------+

In this query, we specify aliases for the table name to refer to the columns and keep straight which instance of
the table each column reference is associated with.

Previous / Next / Up / Table of Contents

User Comments

Posted by Steve Seliquini on November 30 2003 8:46am [Delete] [Edit]

Depending on when this query was run, Bowser might not be available for mating. :) In this case we can add
additional criteria to the where clause to ensure that the animal is actually alive to perform.

« 3.3.4.9 Using More Than one Table

3.5 Using mysql in Batch Mode »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.4 Getting Information About Databases and Tables

3.4. Getting Information About
Databases and Tables

What if you forget the name of a database or table, or what the structure of a given table is (for example, what
its columns are called)? MySQL addresses this problem through several statements that provide information
about the databases and tables it supports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To find out
which database is currently selected, use the DATABASE() function:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie |
+------------+

If you have not yet selected any database, the result is NULL.

To find out what tables the default database contains (for example, when you are not sure about the name of a
table), use this command:

mysql> SHOW TABLES;
+---------------------+
| Tables_in_menagerie |
+---------------------+
| event |
| pet |
+---------------------+

The name of the column in the output produced by this statement is always Tables_in_db_name, where
db_name is the name of the database. See Section 11.5.4.25, “SHOW TABLES Syntax”, for more information.

If you want to find out about the structure of a table, the DESCRIBE command is useful; it displays information
about each of a table's columns:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the data type for the column, NULL indicates whether the column
can contain NULL values, Key indicates whether the column is indexed, and Default specifies the column's
default value. Extra displays special information about columns; for example, if a column was created with the

The world's most popular open source database

AUTO_INCREMENT option, this is shown here.

DESC is a short form of DESCRIBE. See Section 11.3.1, “DESCRIBE Syntax”, for more information.

You can obtain the CREATE TABLE statement necessary to create an existing table using the SHOW CREATE
TABLE statement. See Section 11.5.4.6, “SHOW CREATE TABLE Syntax”.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about them. See
Section 11.5.4.13, “SHOW INDEX Syntax”, for more about this statement.

Previous / Next / Up / Table of Contents

User Comments

Add your own comment.

Top / Previous / Next / Up / Table of Contents
© 1995-2008 MySQL AB. All rights reserved.

« 3.4 Getting Information About Databases
and Tables

3.6 Examples of Common Queries »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.5 Using mysql in Batch Mode

3.5. Using mysql in Batch Mode

In the previous sections, you used mysql interactively to enter queries
and view the results. You can also run mysql in batch mode. To do this, put the commands you want to run in
a file, then tell mysql to read its input from the file:

shell> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that cause problems, you
can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

shell> mysql -h host -u user -p < batch-file
Enter password: ********

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use the --
force command-line option.

Why use a script? Here are a few reasons:

If you run a query repeatedly (say, every day or every week), making it a script allows you to avoid
retyping it each time you execute it.

You can generate new queries from existing ones that are similar by copying and editing script files.

Batch mode can also be useful while you're developing a query, particularly for multiple-line commands
or multiple-statement sequences of commands. If you make a mistake, you don't have to retype
everything. Just edit your script to correct the error, then tell mysql to execute it again.

If you have a query that produces a lot of output, you can run the output through a pager rather than
watching it scroll off the top of your screen:

shell> mysql < batch-file | more

You can catch the output in a file for further processing:

shell> mysql < batch-file > mysql.out

You can distribute your script to other people so that they can also run the commands.

Some situations do not allow for interactive use, for example, when you run a query from a cron job. In
this case, you must use batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when you use it
interactively. For example, the output of SELECT DISTINCT species FROM pet looks like this when mysql is
run interactively:

The world's most popular open source database

+---------+
| species |
+---------+
| bird |
| cat |
| dog |
| hamster |
| snake |
+---------+

In batch mode, the output looks like this instead:

species
bird
cat
dog
hamster
snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to the output the
commands that are executed, use mysql -vvv.

You can also use scripts from the mysql prompt by using the source command or \. command:

mysql> source filename;
mysql> \. filename

See Section 4.5.1.4, “Executing SQL Statements from a Text File”, for more information.

Previous / Next / Up / Table of Contents

User Comments

Posted by Yurii Zborovs'kyi on March 6 2003 12:57am [Delete] [Edit]

How to measure total batch running time for several SQLs:

at start of your script file
SET @start=UNIX_TIMESTAMP();

great job
...
...
...

at bottom of your script file
SET
@s=@seconds:=UNIX_TIMESTAMP()-@start,
@d=TRUNCATE(@s/86400,0), @s=MOD(@s,86400),
@h=TRUNCATE(@s/3600,0), @s=MOD(@s,3600),
@m=TRUNCATE(@s/60,0), @s=MOD(@s,60),
@day=IF(@d>0,CONCAT(@d,' day'),''),
@hour=IF(@d+@h>0,CONCAT(IF(@d>0,LPAD(@h,2,'0'),@h),' hour'),''),
@min=IF(@d+@h+@m>0,CONCAT(IF(@d+@h>0,LPAD(@m,2,'0'),@m),' min.'),''),
@sec=CONCAT(IF(@d+@h+@m>0,LPAD(@s,2,'0'),@s),' sec.');

SELECT
CONCAT(@seconds,' sec.') AS seconds,

« 3.5 Using mysql in Batch Mode

3.6.1 The Maximum Value for a Column »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.6 Examples of Common Queries

3.6. Examples of Common Queries

[+/-]

Here are examples of how to solve some common problems with MySQL.

Some of the examples use the table shop to hold the price of each article (item number) for certain traders
(dealers). Supposing that each trader has a single fixed price per article, then (article, dealer) is a primary
key for the records.

Start the command-line tool mysql and select a database:

shell> mysql your-database-name

(In most MySQL installations, you can use the database named test).

You can create and populate the example table with these statements:

CREATE TABLE shop (
 article INT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
 dealer CHAR(20) DEFAULT '' NOT NULL,
 price DOUBLE(16,2) DEFAULT '0.00' NOT NULL,
 PRIMARY KEY(article, dealer));
INSERT INTO shop VALUES
 (1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),
 (3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After issuing the statements, the table should have the following contents:

SELECT * FROM shop;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	A	3.45
0001	B	3.99
0002	A	10.99
0003	B	1.45
0003	C	1.69
0003	D	1.25
0004	D	19.95
+---------+--------+-------+

Previous / Next / Up / Table of Contents

User Comments

Add your own comment.

Top / Previous / Next / Up / Table of Contents
© 1995-2008 MySQL AB. All rights reserved.

The world's most popular open source database

« 3.6 Examples of Common Queries

3.6.2 The Row Holding the Maximum of a
Certain Column »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.6 Examples of Common Queries :: 3.6.1 The Maximum Value for a
Column

3.6.1. The Maximum Value for a Column

“What's the highest item number?”

SELECT MAX(article) AS article FROM shop;

+---------+
| article |
+---------+
| 4 |
+---------+

Previous / Next / Up / Table of Contents

User Comments

Posted by Najeem M Illyas on November 13 2004 6:03am [Delete] [Edit]

Similarly MIN can be used to find minium value

SELECT MIN(jnr_id) AS jnr_id FROM chain

+----------+
| jnr_id |
+----------+
| 1000 |
+----------+

Posted by Andy Pieters on February 6 2005 8:06pm [Delete] [Edit]

You can use just about any function in a select query.

Besides the MAX, and MIN functions, there is also the AVG function to quickly calculate the Average value of a field.

* The AS parameter sets the name of the field that is outputted

Example:

SELECT avg(article) AS article_avg FROM shop;

+-------------+
| article_avg |
+-------------+
| 2.4286 |
+-------------+

1 row in set (0.00 sec)

The world's most popular open source database

« 3.6.1 The Maximum Value for a Column

3.6.3 Maximum of Column per Group »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.6 Examples of Common Queries :: 3.6.2 The Row Holding the
Maximum of a Certain Column

3.6.2. The Row Holding the Maximum of a
Certain Column

Task: Find the number, dealer, and price of the most expensive article.

This is easily done with a subquery:

SELECT article, dealer, price

FROM shop

WHERE price=(SELECT MAX(price) FROM shop);

Another solution is to sort all rows descending by price and get only the first row using the MySQL-specific
LIMIT clause:

SELECT article, dealer, price

FROM shop

ORDER BY price DESC

LIMIT 1;

Note

If there were several most expensive articles, each with a price of 19.95, the LIMIT solution
would show only one of them.

Previous / Next / Up / Table of Contents

User Comments

Posted by Andrew Ford on July 20 2003 5:10am [Delete] [Edit]

Problem: To find out which team scored the most points in a given week for my Fantasy Football League.

Background Info: My game Schedule table had five columns (awayTeam, awayPoints, homeTeam, homePoints, &
week). So, I decided to make a temporary table to make the team IDs and points indifferent.
CREATE TEMPORARY TABLE tmp (team INT NOT NULL,
points INT,
PRIMARY KEY (team));

Populate table:
INSERT INTO tmp
SELECT awayTeam, awayPoints
FROM Schedule
WHERE week=1;
(Rinse & repeat for home team).

Here's where everything gets *stupid* (for lack of a better term). You'd expect to just do a nested select to figure the
team with the most points. For example:
SELECT t.team, f.name
FROM tmp t, fflTeam f

The world's most popular open source database

« 3.6.2 The Row Holding the Maximum of a
Certain Column

3.6.4 The Rows Holding the Group-wise
Maximum of a Certain Field »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.6 Examples of Common Queries :: 3.6.3 Maximum of Column per Group

3.6.3. Maximum of Column per Group

Task: Find the highest price per article.

SELECT article, MAX(price) AS price
FROM shop
GROUP BY article

+---------+-------+
| article | price |
+---------+-------+
0001	3.99
0002	10.99
0003	1.69
0004	19.95
+---------+-------+

Previous / Next / Up / Table of Contents

User Comments

Posted by Marco Gergele on September 30 2004 10:24am [Delete] [Edit]

There seems to be no NULL=Infinity maximum version. In a column is stored end (type date) with NULL = no end. I need the maximum of that column,
which is NULL if a NULL-value exists. That should be easy to implement as a function, but not so easy with the existing function.

The same for sum, avg and so on. The versions with NULL=ignore are usefull most of the time, but sum() of NULL and 5 can sometimes be NULL
instead of 5. NULL+5 is NULL.

Add your own comment.

Top / Previous / Next / Up / Table of Contents
© 1995-2008 MySQL AB. All rights reserved.

The world's most popular open source database

« 3.6.3 Maximum of Column per Group

3.6.5 Using User-Defined Variables »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.6 Examples of Common Queries :: 3.6.4 The Rows Holding the Group-
wise Maximum of a Certain Field

3.6.4. The Rows Holding the Group-wise
Maximum of a Certain Field

Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM shop s1
WHERE price=(SELECT MAX(s2.price)
 FROM shop s2
 WHERE s1.article = s2.article);

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	B	3.99
0002	A	10.99
0003	C	1.69
0004	D	19.95
+---------+--------+-------+

The preceding example uses a correlated subquery, which can be inefficient (see Section 11.2.8.7, “Correlated
Subqueries”). Other possibilities for solving the problem are to use a uncorrelated subquery in the FROM clause
or a LEFT JOIN:

SELECT s1.article, dealer, s1.price
FROM shop s1
JOIN (
 SELECT article, MAX(price) AS price
 FROM shop
 GROUP BY article) AS s2
 ON s1.article = s2.article AND s1.price = s2.price;

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.article = s2.article AND s1.price < s2.price
WHERE s2.article IS NULL;

The LEFT JOIN works on the basis that when s1.price is at its maximum value, there is no s2.price with a
greater value and the s2 rows values will be NULL. See Section 11.2.7.1, “JOIN Syntax”.

Previous / Next / Up / Table of Contents

User Comments

Posted by Tim Henderson on February 10 2004 3:55am [Delete] [Edit]

OK, Some BAD News about performance:

The world's most popular open source database

« 3.6.4 The Rows Holding the Group-wise
Maximum of a Certain Field

3.6.6 Using Foreign Keys »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.6 Examples of Common Queries :: 3.6.5 Using User-Defined Variables

3.6.5. Using User-Defined Variables

You can employ MySQL user variables to remember results without
having to store them in temporary variables in the client. (See Section 7.4, “User-Defined Variables”.)

For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

Note

It is also possible to store the name of a database object such as a table or a column in a
user variable and then to use this variable in an SQL statement; however, this requires the
use of a prepared statement. See Section 11.7, “SQL Syntax for Prepared Statements”, for
more information.

Previous / Next / Up / Table of Contents

User Comments

Posted by Daniel on September 30 2005 5:48pm [Delete] [Edit]

Remember that using user variables the query will not be cached if you use the query caching option on the server,
and therefore the answer could be slower than what we might expect.

Add your own comment.

Top / Previous / Next / Up / Table of Contents
© 1995-2008 MySQL AB. All rights reserved.

The world's most popular open source database

« 3.6.5 Using User-Defined Variables

3.6.7 Searching on Two Keys »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.6 Examples of Common Queries :: 3.6.6 Using Foreign Keys

3.6.6. Using Foreign Keys

In MySQL, InnoDB tables support checking of foreign key constraints.
See Section 12.2, “The InnoDB Storage Engine”, and Section 1.8.5.4, “Foreign Keys”.

A foreign key constraint is not required merely to join two tables. For storage engines other than InnoDB, it is
possible when defining a column to use a REFERENCES tbl_name(col_name) clause, which has no actual
effect, and serves only as a memo or comment to you that the column which you are currently defining is
intended to refer to a column in another table. It is extremely important to realize when using this syntax that:

MySQL does not perform any sort of CHECK to make sure that col_name actually exists in tbl_name (or
even that tbl_name itself exists).

MySQL does not perform any sort of action on tbl_name such as deleting rows in response to actions
taken on rows in the table which you are defining; in other words, this syntax induces no ON DELETE or
ON UPDATE behavior whatsoever. (Although you can write an ON DELETE or ON UPDATE clause as part of
the REFERENCES clause, it is also ignored.)

This syntax creates a column; it does not create any sort of index or key.

This syntax will cause an error if used in trying to define an InnoDB table.

You can use a column so created as a join column, as shown here:

CREATE TABLE person (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 name CHAR(60) NOT NULL,
 PRIMARY KEY (id)
);

CREATE TABLE shirt (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 style ENUM('t-shirt', 'polo', 'dress') NOT NULL,
 color ENUM('red', 'blue', 'orange', 'white', 'black') NOT NULL,
 owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
 PRIMARY KEY (id)
);

INSERT INTO person VALUES (NULL, 'Antonio Paz');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'polo', 'blue', @last),
(NULL, 'dress', 'white', @last),
(NULL, 't-shirt', 'blue', @last);

INSERT INTO person VALUES (NULL, 'Lilliana Angelovska');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES

The world's most popular open source database

(NULL, 'dress', 'orange', @last),
(NULL, 'polo', 'red', @last),
(NULL, 'dress', 'blue', @last),
(NULL, 't-shirt', 'white', @last);

SELECT * FROM person;
+----+---------------------+
| id | name |
+----+---------------------+
| 1 | Antonio Paz |
| 2 | Lilliana Angelovska |
+----+---------------------+

SELECT * FROM shirt;
+----+---------+--------+-------+
| id | style | color | owner |
+----+---------+--------+-------+
1	polo	blue	1
2	dress	white	1
3	t-shirt	blue	1
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
7	t-shirt	white	2
+----+---------+--------+-------+

SELECT s.* FROM person p INNER JOIN shirt s
 ON s.owner = p.id
 WHERE p.name LIKE 'Lilliana%'
 AND s.color <> 'white';

+----+-------+--------+-------+
| id | style | color | owner |
+----+-------+--------+-------+
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
+----+-------+--------+-------+

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOW CREATE TABLE or
DESCRIBE:

SHOW CREATE TABLE shirt\G
*************************** 1. row ***************************
Table: shirt
Create Table: CREATE TABLE `shirt` (
`id` smallint(5) unsigned NOT NULL auto_increment,
`style` enum('t-shirt','polo','dress') NOT NULL,
`color` enum('red','blue','orange','white','black') NOT NULL,
`owner` smallint(5) unsigned NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1

The use of REFERENCES in this way as a comment or “reminder” in a column definition works with both MyISAM
and BerkeleyDB tables.

Previous / Next / Up / Table of Contents

« 3.6.6 Using Foreign Keys

3.6.8 Calculating Visits Per Day »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.6 Examples of Common Queries :: 3.6.7 Searching on Two Keys

3.6.7. Searching on Two Keys

An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = '1' OR field2_index = '1'

This case is optimized from MySQL 5.0.0. See Section 6.2.6, “Index Merge Optimization”.

You can also solve the problem efficiently by using a UNION that combines the output of two separate SELECT
statements. See Section 11.2.7.3, “UNION Syntax”.

Each SELECT searches only one key and can be optimized:

SELECT field1_index, field2_index
 FROM test_table WHERE field1_index = '1'
UNION
SELECT field1_index, field2_index
 FROM test_table WHERE field2_index = '1';

Previous / Next / Up / Table of Contents

User Comments

Posted by David Thompson on March 9 2005 3:01pm [Delete] [Edit]

One thing to remember when using the 'union' statement (as I found out): the resulting set removes all duplicate
entries unless you proceed the 'union' statement with the word 'all'. Assuming the table:

mysql> select * from ourpets;

+----------+--------+------------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+------------+------+------------+------------+
Fluffy	Harold	cat	f	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	f	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Dalli	Alli	canine	m	2001-12-20	NULL
Tara	David	canine	f	2002-05-17	NULL
Mimi	Alli	guinea pig	m	2004-05-17	NULL
+----------+--------+------------+------+------------+------------+

11 rows in set (0.00 sec)

The world's most popular open source database

« 3.6.7 Searching on Two Keys

3.6.9 Using AUTO_INCREMENT »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.6 Examples of Common Queries :: 3.6.8 Calculating Visits Per Day

3.6.8. Calculating Visits Per Day

The following example shows how you can use the bit group functions to calculate the number of
days per month a user has visited a Web page.

CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL,
 day INT(2) UNSIGNED ZEROFILL);
INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
 (2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page. To determine how
many different days in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
 GROUP BY year,month;

Which returns:

+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 | 01 | 3 |
| 2000 | 02 | 2 |
+------+-------+------+

The query calculates how many different days appear in the table for each year/month combination, with
automatic removal of duplicate entries.

Previous / Next / Up / Table of Contents

User Comments

Posted by [name withheld] on May 17 2005 2:39pm [Delete] [Edit]

It seems to me that it would be much simpler and intuitive to use something like this to query the days per month:

SELECT year, month, COUNT(DISTINCT day) AS days FROM t1 GROUP BY year,month;

Posted by Anders Henke on December 19 2005 1:55pm [Delete] [Edit]

Note that this example is not suitable for large-scale processing of weblogs ... it's missing indexes and usually one might use an aggregated counter if
aggregated values are goal of the statistics.

Add your own comment.

Top / Previous / Next / Up / Table of Contents
© 1995-2008 MySQL AB. All rights reserved.

The world's most popular open source database

« 3.6.8 Calculating Visits Per Day

3.7 Queries from the Twin Project »

Section Navigation [Toggle]

Contact a MySQL Representative

Login | Register

MySQL 5.0 Reference Manual :: 3 Tutorial :: 3.6 Examples of Common Queries :: 3.6.9 Using AUTO_INCREMENT

3.6.9. Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique
identity for new rows:

CREATE TABLE animals (
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (id)
);

INSERT INTO animals (name) VALUES
 ('dog'),('cat'),('penguin'),
 ('lax'),('whale'),('ostrich');

SELECT * FROM animals;

Which returns:

+----+---------+
| id | name |
+----+---------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
+----+---------+

You can retrieve the most recent AUTO_INCREMENT value with the LAST_INSERT_ID() SQL function or the
mysql_insert_id() C API function. These functions are connection-specific, so their return values are not
affected by another connection which is also performing inserts.

Note

For a multiple-row insert, LAST_INSERT_ID() and mysql_insert_id() actually return the
AUTO_INCREMENT key from the first of the inserted rows. This allows multiple-row inserts to be
reproduced correctly on other servers in a replication setup.

For MyISAM and BDB tables you can specify AUTO_INCREMENT on a secondary column in a multiple-column
index. In this case, the generated value for the AUTO_INCREMENT column is calculated as
MAX(auto_increment_column) + 1 WHERE prefix=given-prefix. This is useful when you want to put
data into ordered groups.

CREATE TABLE animals (
 grp ENUM('fish','mammal','bird') NOT NULL,
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (grp,id)
);

The world's most popular open source database

INSERT INTO animals (grp,name) VALUES
 ('mammal','dog'),('mammal','cat'),
 ('bird','penguin'),('fish','lax'),('mammal','whale'),
 ('bird','ostrich');

SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp | id | name |
+--------+----+---------+
fish	1	lax
mammal	1	dog
mammal	2	cat
mammal	3	whale
bird	1	penguin
bird	2	ostrich
+--------+----+---------+

Note that in this case (when the AUTO_INCREMENT column is part of a multiple-column index),
AUTO_INCREMENT values are reused if you delete the row with the biggest AUTO_INCREMENT value in any
group. This happens even for MyISAM tables, for which AUTO_INCREMENT values normally are not reused.

If the AUTO_INCREMENT column is part of multiple indexes, MySQL will generate sequence values using the
index that begins with the AUTO_INCREMENT column, if there is one. For example, if the animals table
contained indexes PRIMARY KEY (grp, id) and INDEX (id), MySQL would ignore the PRIMARY KEY for
generating sequence values. As a result, the table would contain a single sequence, not a sequence per grp
value.

To start with an AUTO_INCREMENT value other than 1, you can set that value with CREATE TABLE or ALTER
TABLE, like this:

mysql> ALTER TABLE tbl AUTO_INCREMENT = 100;

More information about AUTO_INCREMENT is available here:

How to assign the AUTO_INCREMENT attribute to a column: Section 11.1.5, “CREATE TABLE Syntax”, and
Section 11.1.2, “ALTER TABLE Syntax”.

How AUTO_INCREMENT behaves depending on the SQL mode: Section 5.1.6, “SQL Modes”.

Find the row that contains the most recent AUTO_INCREMENT value: Section 10.2.3, “Comparison
Functions and Operators”.

Set the AUTO_INCREMENT value to be used: Section 11.5.3, “SET Syntax”.

AUTO_INCREMENT and replication: Section 14.3.1, “Replication Features and Issues”.

Server-system variables related to AUTO_INCREMENT (auto_increment_increment and
auto_increment_offset) that can be used for replication: Section 5.1.3, “System Variables”.

Previous / Next / Up / Table of Contents

User Comments

Posted by Jim Martin on October 1 2002 9:57am [Delete] [Edit]

