
Once upon a time, a software company developed a desktop publishing
program for the consumer market. During development, the testers found a bug: In a small zone

near the upper right corner, you couldn’t paste a graphic. They called this the “postage stamp bug.”

The programmers decided this wasn’t a very important bug, since you could work around it by re-

sizing the graphic or placing it a bit differently. The code was fragile, so they decided not to fix it.

The testers, on the other hand, felt the postage stamp bug should be fixed. To strengthen their

case, they found someone who helped her children lay out their Girl Scout newsletter. The mother

wanted to format the newsletter exactly like the one she had mimeographed, but she could not be-

cause the newsletter’s logo was positioned at the postage stamp. The company still wouldn’t fix the

bug. The marketing manager said the customer only had to change the document slightly, and the

programmers insisted the risk was too high.

Being a tenacious bunch, these testers didn’t give up. The marketing manager often bragged that

his program could do anything PageMaker could do, so the testers dug through PageMaker market-

ing materials and found a brochure with a graphic you-know-where. This bug report said the

postage stamp bug made it impossible to duplicate PageMaker’s advertisement. That got the mar-

keter’s attention. A week later, the bug was fixed.

This story (loosely based on real events) is a classic illustra-

tion of a scenario test. A scenario is a hypothetical story used

to help a person think through a complex problem or system.

Scenarios gained popularity in military planning in the United 

16 STQE SEPTEMBER/OCTOBER 2003 www.stqemagazine.com

Testing

I N F O T O G O
■ Good scenario tests are based

on a story.
■ Scenarios should be motivating,

credible, complex, and easy to
evaluate.

CEM KANER
ON

SCENARIO
TESTING

The Power of “What If...” and 
Nine Ways to Fuel Your Imagination

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/


States in the 1950s. Scenario-based plan-
ning gained wide commercial popularity
after a spectacular success at Royal
Dutch/Shell in the early 1970s. (For some
of the details, read Scenarios: The Art of
Strategic Conversation by Kees van der
Heijden, Royal Dutch/Shell’s former
head of scenario planning.) A scenario
test is a test based on a scenario.

SCENARIO 
TEST
APPLICATIONS
In the postage stamp example, the first
report the testers filed came from a typi-
cal feature test. Everyone agreed there
was a bug, but it didn’t capture the imag-

ination of any influential stakeholders.
The second report told a credible story
about a genuine member of the target
market (the Girl Scout newsletter au-
thor), but that customer’s inconvenience
wasn’t motivating enough to convince
the marketing manager to override the
programmers’ concerns. The third report
told a different story that limited the
marketing manager’s sales claims. That
hit the marketing manager where it hurt.
He insisted the bug be fixed.

The postage stamp bug illustrated one
application of scenario testing: Make a
bug report more motivating. There are
several other applications, including
learn the product, connect testing to doc-
umented requirements, expose failures to

deliver desired benefits, explore expert
use of the program, and bring require-
ments-related issues to the surface.

Early in testing, scenarios help you
learn the product. I used to believe that
an excellent way to teach testers about a
product was to have them work through
the manual, keystroke by keystroke. For
years I did this myself and required my
staff to do it. I was repeatedly confused
and frustrated that I didn’t learn much
this way and annoyed with staff who
treated the task as low value. Colleagues
(James Bach, for example) have also told
me they’ve been surprised that testing
the product against the manual hasn’t
taught them much. John Carroll tackled
this issue in his book The Nurnberg Fun-

18 STQE SEPTEMBER/OCTOBER 2003 www.stqemagazine.com

Testing

Because she has a different perspective, the scenario tester will often do
her own product and marketing research while she tests, on top of or inde-
pendently of research done by marketing. Here are some useful ways to
guide your research. It might seem that you need to know a lot about the
system to use these, and yes, the more you know, the more you can do.
However, even if you’re new to the system, paying attention to a few of
these as you learn the system can help you design interesting scenarios.

Write life histories for objects in the system.
Imagine a program that manages life insurance policies. Someone

applies for a policy. Is he insurable? Is he applying for himself or a policy on
his wife, child, friend, competitor? Who is he allowed to insure? Why? Sup-
pose you issue the policy. In the future he might pay late, borrow against
the policy, change the beneficiary, threaten to (but not actually) cancel it,
appear to (but not) die—much can happen. Eventually, the policy will ter-
minate by paying out, expiring, or being canceled. You can write many sto-
ries to trace different start-to-finish histories of these policies. The system
should be able to handle each story. (Thanks to Hans Schaefer for describ-
ing this approach to me.)

List possible users. Analyze their interests and
objectives.

It’s easy to say, “List all the possible users,” but not so easy to list them.
(Don Gause and Jerry Weinberg provide a useful brainstorming list in Ex-
ploring Requirements, p. 72.) Once you identify a user, try to imagine some

of her interests. For example, think of a retailer’s inventory control pro-
gram. Users include warehouse staff, bookkeepers, store managers, sales-
people, etc. Focus on the store manager. She wants to maximize store
sales, minimize write-downs (explained below), and impress visiting execu-
tives by looking organized. These are examples of her interests. She will
value the system if it furthers her interests.

Focus on one interest, such as minimizing write-downs. A store takes a
write-down on an item when it reduces the item’s value in its records.
From there, the store might sell the item for much less, perhaps below
original cost, or even give it away. If the manager’s pay depends on store
profits, write-downs shrink her pay. Some inventory systems can contrast
sales patterns across the company’s stores. An item that sells well in one
store might sell poorly in another store. Both store managers have an inter-
est in transferring that stock from the low-sale store to the high-sale one,
but if they don’t discover the trend soon enough, the sales season might
be over (such as the Christmas season for games) before they can make
the transfer. A slow system would show them missed opportunities, frus-
trating them instead of facilitating profit-enhancing transfers.

In thinking about the interest (minimize write-downs), we identified an
objective the manager has for the system, something it can do for her. Her
objective is to quickly discover differences in sales patterns across stores.
From here, you look for features that serve that objective. Build tests that
set up sales patterns (over several weeks) in different items at different
stores, decide how the system should respond to them, and watch what it
actually does. Note that under your analysis, it’s an issue if the system
misses clear patterns, even if all programmed features work as specified.

Don’t forget disfavored users. As Gause and Weinberg point out, some
users are disfavored. For example, consider an accounting system and an
embezzling employee. This user’s interest is to get more money. His objec-
tive is to use this system to steal the money. This is disfavored: the system
should make this harder for the disfavored user rather than easier.

List “system events” and “special events.”
An event is any occurrence that the system is designed to respond

to. In Mastering the Requirements Process, Robertson and Robertson
write about business events, such as placing an order. For any event, you’d
like to understand its purpose, what the system is supposed to do with it,
business rules associated with it, and so on. (Continued on next page)

3
2

1

9 WAYS 
TO CREATE 
GOOD 
SCENARIO 
TESTS

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/


nel: Designing Minimalist Instruction
for Practical Computer Skill. People
don’t learn well by following checklists
or material that is organized for them.
They learn by doing tasks that require
them to investigate the product for
themselves. (Another particularly useful
way to teach testers the product while
developing early scenarios is to pair a
subject-matter expert with an experi-
enced tester and have them investigate
together.)

Scenarios are also useful to connect to
documented software requirements, es-
pecially requirements modeled with use
cases. Within the Rational Unified
Process, a scenario is an instantiation of a
use case—take a specific path through

the model, assigning specific values to
each variable. More complex tests are
built up by designing a test that runs
through a series of use cases. (Ross Col-
lard described use case scenarios in “Test
Design: Developing test cases from use
cases,” STQE, July 1999; available at
www.stickyminds.com.)

You can use scenarios to expose fail-
ures to deliver desired benefits whether
or not your company creates use cases
or other requirements documentation.
The scenario is a story about someone
trying to accomplish something with the
product under test. In our example sce-
nario, the user tried to create a newslet-
ter that matched a mimeographed
newsletter. The ability to create a

newsletter that looks the way you want
is a key benefit of a desktop publishing
program. The ability to place a graphic
on the page is a single feature you can
combine with other features to obtain
the benefit you want. A scenario test
provides an end-to-end check on a bene-
fit that the program is supposed to de-
liver. Tests of individual features and
mechanical combination tests of related
features or their input variables (using
such techniques as combinatorial testing
or orthogonal arrays) are not designed
to provide this kind of check.

Scenarios are also useful for exploring
expert use of a program. As Larry Con-
stantine and Lucy Lockwood discuss in
Software for Use, people use a program

www.stqemagazine.com SEPTEMBER/OCTOBER 2003 STQE 19

Testing

(Continued from previous page) Special events are predictable but
unusual occurrences that require special handling. For example, a billing
system might do special things at year-end. The inventory system might
treat transfers differently (record quantities but not other data) when spe-
cial goods are brought in for clearance sales.

List benefits and create end-to-end tasks to
check them.

What benefits is the system supposed to provide? If the current project is
an upgrade, what benefits will the upgrade bring? Don’t rely on only an of-
ficial list of benefits. Ask stakeholders what they think the benefits of the
system are supposed to be. Look for misunderstandings and conflicts
among the stakeholders.

Interview users about famous challenges and
failures of the old system.

Meet with users (and other stakeholders) individually and in groups. Ask
them to describe the basic transactions they’re involved with. Get them
to draw diagrams and explain how things work. As they warm up, en-
courage them to tell you the system’s funny stories, the crazy things peo-
ple tried to do with the system. If you’re building a replacement system,
learn what happened with the predecessor. Along with the funny stories,
collect stories of annoying failures and strange things people tried that
the system couldn’t handle gracefully. Later, you can sort out how
“crazy” or “strange” these attempted uses of the system were. What
you’re fishing for are special cases that had memorable results but were
probably not considered credible enough to mention to the requirements
analyst. Hans Buwalda talks about these types of interviews (www.sticky-
minds.com).

Work alongside users to see how they work and
what they do.

While designing a telephone operator’s console (a specially designed
phone), I traveled around the country watching operator/receptionists
use their phones. Later, leading the phone company’s test group, I visited
customer sites to sit with them through training, watch them install beta
versions of hardware and software, and watch ongoing use of the sys-
tem. This provided invaluable data. Any time you can spend working with

users learning how they do their work will give you ideas for scenarios.

Read about what systems like this are supposed
to do.

So you’re about to test an inventory management program and you’ve nev-
er used one before. Where should you look? Amazon lists 33 books with ti-
tles like What to Look For in Warehouse Management System Software.
Google gives 26,100 hits for “inventory management system.” This wealth
of material documents user expectations, competitive issues, and common
and uncommon scenarios for any type of business system.

Study complaints about the predecessor to this
system or its competitors.

Software vendors usually create a database of customer complaints. Com-
panies that write software for their own use often have an in-house help
desk (user support) group that keeps records of user problems. Read the
complaints. Take “user errors” seriously—they reflect ways that the users
expected the system to work, or things they expected the system to do.

You might also find complaints about your product or similar ones on-
line.

Create a mock business. Treat it as real and
process its data.

Your goal in this style of testing is to simulate a real user of the product.
For example, if you’re testing a word processor, write documents—real
ones that you need in your work.

Try to find time to simulate a business that would use this software
heavily. Make the simulation realistic. Build your database one transaction
at a time. Run reports and check them against your data. Run the special
events. Read the newspaper and create situations in your company’s work-
flow that happen to other companies of your kind. Be realistic, be demand-
ing. Push the system as hard as you would push it if this really were your
business. And complain loudly (write bug reports) if you can’t do what you
believe you should be able to do.

Not everyone is suited to this approach, but in the hands of a skilled
tester, I saw this technique expose database corruptors, report miscalcula-
tors, and other compelling bugs under more complex conditions than we
would have otherwise tested.

9

8

7

6

5

4

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/


differently as they gain experience with
it. Initial reactions to a program are im-
portant, but so is the stability of the pro-
gram in the hands of the expert user. You
may have months to test a moderately
complex program. This time provides
opportunity to develop expertise and
simulations of expert use. During this pe-
riod, one or more testers can develop
full-blown applications of the software
under test. For example, testers of a data-
base manager might build a database or
two. Over the months, they will add
data, generate reports, and fix problems,
all while gaining expertise themselves
and pushing the database to handle ever
more sophisticated tasks. Along the way,
especially if you staff this work in a way
that combines subject-matter expertise
and testing skill, these testers will find
credible, serious problems that would
have been hard to find (hard to imagine
the tests to search for them) any other
reasonable way.

Scenarios are especially interesting for
surfacing requirements-related contro-
versies. Even if there is a signed-off re-
quirements document, this only reflects
the agreements that project stakeholders
have reached. There are always ongoing
disagreements. As Tom DeMarco and
Tim Lister have often pointed out, ambi-
guities in requirements documents are of-
ten not accidental; they are a way of pa-
pering over disagreements. A project’s
requirements can change dramatically
for reasons that are difficult to control
early in the project:

■ Key people on the project come and
go. Newcomers bring new views.

■ Stakeholders’ level of influence
changes over time.

■ Some stakeholders don’t grasp the im-
plications of a product until they use it,
and they won’t (or can’t) use it until it’s
developed enough to be useful. This is
not unreasonable—in a company that
makes and sells products, relatively few
employees are chosen for their ability as
designers or abstract thinkers.

■ Some people whose opinions will be-
come important aren’t even invited to
early analysis and design meetings. For
example, to protect trade secrets, some
resellers or key customers might be kept
in the dark until late in the project.

■ Finally, market conditions change, es-
pecially on a long project. Competitors
bring out new products. So do makers of
products that are to be interoperable
with the product under development,
and makers of products (I/O devices, op-
erating system, etc.) that form the techni-
cal platform and environment for the
product.

While surfacing controversies is impor-
tant, it can lead to frustrating delays. A
tester who suspects that a particular
stakeholder might be unhappy with some
aspect of the program creates a scenario
test and shows the results to that stake-
holder. By creating detailed examples of
how the program works, or doesn’t
work, the scenario tester forces issue af-
ter issue. As a project manager, I’ve seen
this done on my projects and have been
frustrated and annoyed by it. Issues that I

thought were settled were reopened at in-
convenient times, sometimes resulting in
unexpected late design changes. I had to
remind myself that the testers didn’t cre-
ate these issues. With or without testing,
genuine disagreements will have their ef-
fects: In-house stakeholders (such as
salespeople or help desk staff) might sup-
port the product unenthusiastically; cus-
tomers might be less willing to pay for it;
end users might be less willing to adopt
it. Scenario testers provide an early warn-
ing system for requirements problems
that would otherwise haunt the project
later.

CHARACTERISTICS
OF GOOD
SCENARIO TESTS
The ideal scenario test has five key char-
acteristics. It is (a) a story that is (b) mo-
tivating, (c) credible, (d) complex, and
(e) easy to evaluate. These aren’t the
only good characteristics a test can
have. I describe several test techniques
and their strengths in “What IS a Good
Test Case?” (Find this paper at www.
testingeducation.org/articles.) Another
important characteristic is power: One
test is more powerful than another if it’s
more likely to expose a bug. See the ac-
companying sidebar “Power-Up Scenar-
ios” for more on how to increase the
power of scenario tests.

The test should be based on a story
about how the program is used, includ-
ing information about the motivations of
the people involved. Storytelling is an art.
I don’t know how to teach you to be a
good storyteller. What I can do is suggest
some things that might be useful to in-
clude in your stories and some ways to
gather and develop the ideas and infor-
mation that you’ll include. (See the side-
bar “9 Ways to Create Good Scenario
Tests” for some of these ideas.)

The story should be motivating. A sto-
ry is motivating if a stakeholder with in-
fluence wants the program to pass the
test. (Anyone affected by a program is a
stakeholder. A person who can influence
development decisions is a stakeholder
with influence.) A dry recital of steps to
replicate a problem doesn’t provide infor-
mation that stirs emotions in people. To
make the story more motivating, tell the
reader why it is important, why the user
is doing what she’s doing, what she
wants, and what the consequences of fail-
ure are to her. This type of information is
normally abstracted out of a use case (see

20 STQE SEPTEMBER/OCTOBER 2003 www.stqemagazine.com

Testing

POWER-UP SCENARIOS
Let’s talk about power for a moment. A technique (scenario testing) focused on developing
credible, motivating tests is not as likely to quickly bring to mind the extreme cases that pow-
er-focused techniques (such as stress, risk-based, and domain testing) are so good for. They
are the straightest lines to failures, but the failures they find are often dismissed as unrealis-
tic, too extreme to be of interest.

One way to increase a scenario’s power is to exaggerate slightly. When someone in your sto-
ry does something that sets a variable’s value, make that value a bit more extreme. Make se-
quences of events more complicated, or add a few more people or documents. Hans Buwalda
is a master of this. He calls these types of scenario tests “soap operas.” (See “Soap Opera
Testing” at www.stickyminds.com.)

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/


22 STQE SEPTEMBER/OCTOBER 2003 www.stqemagazine.com

Testing

Alistair Cockburn’s excellent book Writ-
ing Effective Use Cases, p. 18, and John
Carroll’s discussion of the human issues
missing in use cases in Making Use:
Scenario-Based Design of Human-Com-
puter Interaction, pp. 236–37.)

Along with impact on the user, a high-
ly motivating bug report might consider
the impact of failure on the user’s busi-
ness or on your own company. For exam-
ple, a bug that only modestly impacts the
users but causes them to flood your com-
pany with phone calls would probably be
considered serious. A scenario that brings
out such effects would be influential.

The ideal scenario test has a credible
story. It not only could happen in the real
world, stakeholders believe that some-
thing like it probably would happen.
Sometimes you can establish credibility
simply by referring to a requirements
specification. In many projects, though,
you won’t have these specs, or they won’t
cover your situation. (Each approach dis-
cussed in the sidebar “9 Ways to Create
Good Scenario Tests” is useful for creat-
ing credible tests.)

The story should involve a complex
use of the program or a complex envi-
ronment or a complex set of data. A
complex story involves many features.
You can create simplistic stories that in-
volve only one feature, but why bother?
Other techniques, such as domain test-
ing, are easy to apply to single features
and are more focused on developing
power in these simple situations. The
strength of the scenario is that it can help
you discover problems in the relation-
ships among the features.

Finally, the ideal scenario test is easy
to evaluate—that is, it should be easy to
tell whether the program passed or
failed. Of course, every test result should
be easy to evaluate. However, the more
complex the test, the more likely that the
tester will accept a plausible-looking re-
sult as correct. Ease of evaluation is valu-
able for all tests, but is especially impor-
tant for scenarios because they are
complex. Glen Myers discussed this in
his classic Art of Software Testing, and
I’ve seen other expensive examples of
bugs exposed by a test but not recog-
nized by the tester.

RISKS 
OF SCENARIO
TESTING
I’ve seen three serious problems with sce-
nario tests. One, other approaches are

better for testing early, unstable code.
The scenario test is complex, involving
many features. If the first feature is bro-
ken, the rest of the test can’t be run.
Once that feature is fixed, the next bro-
ken feature blocks the test. In some com-
panies, complex tests fail and fail all
through the project, exposing one or two
new bugs at a time. Discovery of some
bugs has been delayed a long time until
scenario-blocking bugs were cleared out
of the way. To efficiently expose prob-
lems as soon as they appear, test each fea-
ture in isolation before testing scenarios.

Two, scenario tests are not designed
for coverage of the entire program. It
takes exceptional care to cover all the
features or requirements in a set of sce-
nario tests. Covering all the program’s
statements simply isn’t achieved this way.

Finally, scenario tests are often heavily
documented and used time and again.
This seems efficient, given all the work it
can take to create a good scenario. But
scenario tests often expose design errors
rather than coding errors. The second or
third time around, you’ve learned what
this test will teach you about the design.
Scenarios are interesting tests for coding
errors because they combine so many fea-
tures and so much data. However, there
are so many interesting combinations to
test that I think it makes more sense to try
different variations of the scenario instead
of the same old test. You’re less likely to

find new bugs with combinations the pro-
gram has already shown it can handle.
Do regression testing with single-feature
tests or unit tests, not scenarios.

Scenario testing isn’t the only type of
testing and should not be used exclusive-
ly. Scenario testing works best for com-
plex transactions or events, for studying
end-to-end delivery of the benefits of the
program, for exploring how the program
will work in the hands of an experienced
user, and for developing more persuasive
variations of bugs found using other ap-
proaches. STQE

Cem Kaner is Professor of Computer
Sciences at Florida Tech. He is senior
author of three books, Lessons Learned
in Software Testing, Bad Software, and
Testing Computer Software. He’s also
an attorney (a former prosecutor)
whose idea of a good time is holding
companies accountable for releasing de-
fective software. Work towards this ar-
ticle was supported by the National Sci-
ence Foundation grant EIA-0113539
and by Rational Software.

DISTINGUISHING SCENARIO TESTS
FROM REQUIREMENTS ANALYSIS
Designing scenario tests is much like doing a requirements analysis, but is not requirements
analysis. They rely on similar information but use it differently.

■ The requirements analyst tries to foster agreement about the system to be built. The tester
exploits disagreements to predict problems with the system.

■ The tester doesn’t have to reach conclusions or make recommendations about how the
product should work. Her task is to expose credible concerns to the stakeholders.

■ The tester doesn’t have to make the product design tradeoffs. She exposes the conse-
quences of those tradeoffs, especially unanticipated or more serious consequences than
expected.

■ The tester doesn’t have to respect prior agreements. (Caution: testers who belabor the
wrong issues lose credibility.)

■ The scenario tester’s work need not be exhaustive, just useful.

STQE magazine is produced by 
Software Quality Engineering.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

