
cis1.5, spring 2009, project II / prof sklar.

overview

• This is the project for unit II of cis 1.5. This project covers reading simple information and making decisions
about it (i.e., input and control structures).

• The project is worth 10% of your term grade. It will be marked out of 10 points.

• The project is due via email on Monday March 16.

• Email the project to: sklar@sci.brooklyn.cuny.edu.

• Use a zip utility to bundle all your files together and send them as ONE attachment to the email.
on a PC: use WinZip
on a Mac: use File - Create Archive...
on Linux: use zip

• Note that if you are using an IDE, all your C++ source code files will be named main.cpp. You will have
to rename them before putting them in the zip archive!

project description

This project is based on the roomba.cpp program that you have been working on for labs II.1 through II.3.
Similarly to the labs, you will be writing a program that simulates a scribbler robot moving around a room. The
room is 12 units across (in the x direction, or east/west) and 9 units down (in the y direction, or north/south).
Assume that (0, 0) is the upper left (farthest northwest) corner of the room, and (11, 8) is the lower right (farthest
southeast) corner of the room.

The project contains 5 parts. Each part is worth 2 points.

1 getting started

1.1. Create a new C++ program file called scribbler.cpp.

1.2. At the top of the file, be sure to include the following header files:

#include <stdlib.h>

#include <sys/time.h>

#include <iostream>

using namespace std;

1.3. Make yourself a template by puting in the code for the main() function:

int main() {

.

.

.

} // end of main()

1.4. Inside the main() function, at the beginning, declare the following variables:

• two integers that store the scribbler robot’s x and y home location in the room; the “home” location
is where the robot starts when the program begins;

1



• two integers that store the scribbler robot’s x and y current location in the room; the current location
is wherever the robot moves to each time the user enters a valid command;

• a character variable to store the user’s input; and

• a boolean variable that indicates if the user wants to exit the program or not.

2 finding home

2.1. Inside the main(), initialize the random number generator using the srand() function. Use the current time
as the seed (using the function call time(NULL)).

2.2. Initialize the scribbler robot’s home x and y location using calls to the rand() function.

2.3. Remember that the room is only 12×9 units in size, so x must be between 0 and 11 and y must be between
0 and 8. (Refer to the lecture notes from Feb 25 for an example of how to use the modulo (%) operator to
scale the output from rand().)

2.4. Initialize the scribbler robot’s current x and y location to be the same as its home location (set above).

3 reading the user’s input

3.1. Inside the main(), create a while loop, using the boolean variable (declared above) to control the loop.
Remember to initialize the boolean variable outside the loop, before the while statement.

3.2. Inside the while loop, ask the user to enter any of five commands: N to make the robot go north, S to
make the robot go south, E to make the robot go east, W to make the robot go west, or X to exit the loop.

3.3. Read the user’s input and echo it back to the screen (e.g., you just entered N).

4 acting based on the user’s input

4.1. Inside the while loop, branch according to what the user entered, as follows:

• if the user entered N or n, make the robot move “north” by decreasing the robot’s y value by 1;

• if the user entered S or s, make the robot move “south” by increasing the robot’s y value by 1;

• if the user entered E or e, make the robot move “east” by increasing the robot’s x value by 1;

• if the user entered W or w, make the robot move “west” by decreasing the robot’s x value by 1;

• if the user entered X or x, set the boolean loop control variable to exit the while loop;

• otherwise (the user entered none of the above values), display a message telling the user that s/he
entered an invalid value and let her/him try again.

4.2. You can use either an if/else or a switch/case control structure to handle the branching.

4.3. When you increment or decrement the robot’s x and y values, make sure to check that the robot does not
go outside the boundaries of the room. Do NOT use wrap-around for this assignment.

4.4. If the user enters a valid command other than X or x, display the robot’s current location.

2



5 calculating the distance home

5.1. The Manhattan distance is the total number of units in the x direction and in the y direction that the
robot must travel to go from one location to another. Since the robot cannot move diagonally (it can only
move north, south, east or west), it has to travel as if it were walking the square blocks in Manhattan. An
example is below. If the robot’s home location is (hx, hy) and the robot’s current location is (x, y), then
the value of mx = x − hx and the value of my = y − hy. The Manhattan distance = mx + my.

my
R

mx

5.2. Be aware that there are a number of possibilities for how the home location and the robot’s current locations
can be related to each other in the room.

Consider the drawings below:

R R R R

(a) (b) (c) (d)

In these drawings, the robot is represented by the letter R in the grid and the charging station (home) is
represented by a black square. In figure (a), the home is to the northwest of the robot. In figure (b), the
home is to the northeast of the robot. And so on.

5.3. The Manhattan distance should always be a positive number. So in case (a) above, mx = x − hx and
my = y − hy, as shown earlier. But in case (b), if we calculated mx = x − hx, we would get a negative
number, since hx > x. In this case, you need to calculate mx = hx − x.
→ For each of the four cases above, write down the formulas for calculating mx and my.

5.4. Next you need to know which case you have.
→ For each of the four cases above, write down the relationships between x and hx and y and hy that go
with each case. For example, for case (a), x > hx and y > hy.

5.5. Now, you are ready to put this in your code. If the user enters a valid command other than X or x,
calculate the Manhattan distance to the robot’s home location from its current location. First determine
which case you have. Then use the formulas you determined above that go with your case. Then display
the Manhattan distance. Be sure to include a friendly message explaining what you are displaying, like:
the Manhattan distance to the robot’s home is: 5 units.

submission instructions

• You will be submitting ONE file: scribbler.cpp

• Make sure that you have a COMMENT at the top of the file that contains the name of the file, YOUR
NAME, “CIS 1.5 PROJECT 2” and the submission date (March 16, 2009).

• The subject line of your email should say: CIS 1.5 PROJECT 2

3


