
cis1.5 spring2009 lecture II.3

today we are going to talk about...

• switch control structures

• random numbers

• for loops

cis1.5-spring2009-sklar-lecII.3 1

switch control structure

• a switch statement is useful if you are making a choice between a number of options all

concerning the value of a single, simple-typed variable

• it can replace multiple if-else-if-else... statements and tends to look neater

• but it can only replace multiple if-else-if-else... statements if the variable being

compared in each statement is the same variable and it is of a simple data type (e.g., int,

char, bool, etc.)

cis1.5-spring2009-sklar-lecII.3 2

for example:

char c;

...

if (c==’F’) {

y = y + 1;

}

else if (c==’B’) {

y = y - 1;

}

else if (c==’Q’) {

q = true;

}

else {

cout << "oops!\n";

}

which can be replaced with:

char c;

...

switch (c) {

case ’F’:

y = y + 1;

break;

case ’B’:

y = y - 1;

break;

case ’Q’:

q = true;

break;

default:

cout << "oops!\n";

break;

} // end of switch

cis1.5-spring2009-sklar-lecII.3 3

• note the new keywords:

– switch which begins the statement and indicates the name of the variable you want to

compare

– case which indicates the value that you want to compare the variable to

– break which ends the clause that gets executed for each matching “case”, i.e., when

the value of the variable matches that specified in the enclosing case

– default, which specifies the “default” case, when the value of the variable does not

match any of those in the specified cases

• note that if you don’t use a break command, then the program control will keep going at

the end of one case and go into the code for the next case

There are times when you want this behavior, but most of the time you don’t.

Here’s an example of a case when you would want this behavior:

switch (c) {

case ’Q’:

case ’q’:

q = true;

break;

} // end of switch

cis1.5-spring2009-sklar-lecII.3 4

random numbers

• computers can generate “random” numbers, which is like picking a number by rolling dice

• there are two steps necessary for generating random numbers:

1. seeding the random number generator

2. picking the random number

• the seed is used to create a sequence of “pseudo random numbers”

you can always get the same sequence again if you use the same seed!

• the random numbers generated are integers (of type int)

• void srand(long seed)

is used to seed (initialize) the random number sequence

• int rand()

returns a random integer between 0 and RAND_MAX, where RAND_MAX is a constant

defined by the C language

• you can scale the result returned from rand() to get a number in the range you want

(e.g., 0..10)

cis1.5-spring2009-sklar-lecII.3 5

random numbers: example

// initialize random seed

srand(time(NULL));

// find random initial location for robot

x = rand() % 10;

y = rand() % 10;

// instead of

// x = 0;

// y = 0;

cis1.5-spring2009-sklar-lecII.3 6

loops

• last class, we introduced while loops

• today we’ll talk more generally about loops

• looping, or iteration, means doing something more than once, perhaps doing something

over and over and over and ... and over again

• there are times when you want your program to do something once, and there are other

times when you want your program to do something more than once—without having to

repeat the code again

• when you write a loop, you need to decide several things:

– how will the program know when to stop looping?

– will anything change about the behavior of the program each time the loop runs?

• in C++, there are two “control structures” that facilitate looping:

– while : generally facilitates condition-controlled looping

– for : generally facilitates counter-controlled looping

cis1.5-spring2009-sklar-lecII.3 7

types of loops

• controlled, non-infinite loops have an end

• loops end in two ways:

– because they have run for a certain number of times;

these are called counter-controlled loops

– because a condition has changed that causes them to stop running;

these are called condition-controlled loops

cis1.5-spring2009-sklar-lecII.3 8

condition-controlled loops: “while”

• we have already used condition-controlled loops:

boolean q;

q = false;

while (q==false) {

...

} // end of while loop

• the syntax for a while loop is:

while (<condition>) {

<body-of-while-loop>

} // end of while loop

• <condition> is something like q==false or any boolean value or clause

• it is important that something happens in the body of the loop to change the value of the

condition, eventually; otherwise you will have an infinite loop

• note that the condition can be false before the loop begins, in which case the loop will

never execute!

cis1.5-spring2009-sklar-lecII.3 9

counter-controlled loops: “for”

• a for loop is used when you know how many times you want something to run

• the syntax for a for loop is:

for (<initialize-stmt> ; <condition> ; <continue-stmt>) {

<body-of-for-loop>

} // end of for loop

• for example:

int i;

for (i=0; i<10; i++) {

cout << "hello\n";

}

this example will print the word hello on the screen ten times, each word on its own line

cis1.5-spring2009-sklar-lecII.3 10

• the <initialize-statement> is something like i=0;

typically, it initializes a variable referred to as the loop counter ;

this variable keeps track of how many times the loop executes

• the <condition> is something like i<10;

typically, it evaluates the loop counter to make sure it has not exceeded its maximum (i.e.,

the number of times the loop should run)

• the <continue-statement> is something like i++

typically, it increments (or decrements) the loop counter

• it is important that something happens in the continuation statement (or the body of the

loop) to change the value of the condition, eventually; otherwise you will have an infinite

loop

• note that the condition can be false before the loop begins, in which case the loop will

never execute!

cis1.5-spring2009-sklar-lecII.3 11

infinite loops

• a loop that never ends is called an infinite loop

• an infinite loop will run as long as the program is running

• it is common when writing programs for robots to write infinite loops—programs that run

as long as the robot is turned on

• however, it is not common and typically unadvisable to write infinite loops for programs

that run on a computer

• in case, by mistake (!), you create an infinite loop on your computer, you can usually get

the program to stop by pressing Ctrl-C (the control “Ctrl” key and the “C” key at the

same time)

• if that doesn’t work, try closing the window where the program is running

• if that doesn’t work, you may have to kill the program using the TaskManager, which is

invoked as follows:

— on Windows, by pressing Ctrl-Alt-Del

— on Mac, by pressing option-apple-esc

cis1.5-spring2009-sklar-lecII.3 12

