
cis1.5 spring2009 lecture IV.1

today we are going to talk about...

• what are arrays and why to use them

• integer arrays

cis1.5-spring2009-sklar-lecIV.1 1

arrays

• arrays are used to hold sets of related types of data

• the data could be integers or doubles or booleans

• the data could also be characters;

arrays of characters are special arrays called strings

we’ll talk about those another day

• today, we’ll focus on arrays that store numbers (e.g., int or double)

• common things to do with numeric data stored in arrays:

– find the largest (or smallest) element

– add up the elements

– compute the average of the elements

– count the number of elements with some feature

cis1.5-spring2009-sklar-lecIV.1 2

what is an array?

• you can think of an array as a set of variables of the same data type, which are grouped

together and all use the same identifier (name).

• just as

int a;

declares one integer variable with the name a, then

int b[5];

declares an array of 5 integers, with the name b.

• the square brackets [] are the crucial bit of syntax, telling the compiler it is dealing with

an array

cis1.5-spring2009-sklar-lecIV.1 3

• whereas

int a;

reserves space for one integer in memory and associates the name a with it:

a

the declaration

int b[5];

reserves space for five integers in memory right next to one another.

b

cis1.5-spring2009-sklar-lecIV.1 4

• elements of the array b are just integers, and we can do exactly the same things with them

that we can do with integers

• the only difference is how we address (i.e., refer to) them

• while we can assign a value to a by:

a = 5;

to do the same to one of the elements of b, we have to specify which element it is.

for example:

b[1] = 5;

• all of the following are legal operations:

b[1] += 2;

b[2] = 7 % 3;

b[3] = b[2] - 5;

b[4] = b[1]/b[3];

cis1.5-spring2009-sklar-lecIV.1 5

• one thing to be careful of is the limits on the index, that is the number inside the square

brackets []

• the first element of an array always has index 0

• so the first element of b is:

b[0]

and, since b has 5 elements, the last element of b is:

b[4]

• in other words, the last index is the length of the array minus 1

• this type of counting (from 0 to length-1) is standard in C, C++ and Java and many other

computer languages

cis1.5-spring2009-sklar-lecIV.1 6

• arrays are useful when you want to store lots of data in memory

• if I want to use 3 integers in my program, then I would just declare 3 different integer

variables

• however, if I wanted to use 30,000 integers in my program, it would be a lot easier to use

an array than to declare 30,000 different integer variables!

• arrays also go very nicely with for loops

cis1.5-spring2009-sklar-lecIV.1 7

• here is some sample code that declares an integer array of 100 values and stores random

numbers in the array:

int a[100];

int i;

for (i=0; i<100; i++) {

a[i] = rand();

} // end for

cis1.5-spring2009-sklar-lecIV.1 8

• once the data is stored in the array, we can do all kinds of stuff with it

• for example, we can print out the values in the array:

for (i=0; i<100; i++) {

cout << a[i] << endl;

} // end for

• or we could print out the values in reverse order:

i = 99;

while (i > 0) {

cout << a[i] << endl;

i--;

} // end while

cis1.5-spring2009-sklar-lecIV.1 9

• another thing we can do is to add up all the values in the array:

int sum;

sum = 0;

for (i=0; i<100; i++) {

sum += a[i];

} // end for

cout << "the sum of all the values in the array is: "

<< sum << endl;

cis1.5-spring2009-sklar-lecIV.1 10

• and another thing we could do is to find the smallest value in the array:

int smallest;

smallest = a[0];

for (i=1; i<100; i++) {

if (a[i] < smallest) {

smallest = a[i];

}

} // end for

cout << "the smallest value in the array is: "

<< smallest << endl;

cis1.5-spring2009-sklar-lecIV.1 11

