
cis1.5 spring2009 lecture IV.2

today we are going to talk about...

• what are strings and why to use them

cis1.5-spring2009-sklar-lecIV.2 1

what are strings

• a string in C++ is one of a special kind of complex data type called a class

• we will talk more about classes in detail at the end of the term

• a class is a compound data type, unlike the simple, native data types we’ve already

discussed (e.g., int, char, bool, double and float)

• a class has members :

it has data fields and functions

cis1.5-spring2009-sklar-lecIV.2 2

strings: declaring and initializing

• strings are declared like this:

string s;

where s is a variable whose data type is a string

• you can set the value of the string using the assignment operator and double quotes ("):

s = "hello";

• NOTE that you use single quotes for char values and double quotes for string values:

char c = ‘A’;

string s = "hello";

• ALSO NOTE that when you use the string class, you also need to include the string

header file:

#include <string>

using namespace std;

cis1.5-spring2009-sklar-lecIV.2 3

strings: output

• we have already used strings for output, e.g.:

cout << "hello" << endl;

• but we have not yet used variables that are declared as strings

• here’s how that works:

#include <iostream>

#include <string>

using namespace std;

int main() {

string s = "hello";

cout << s << endl;

} // end of main()

cis1.5-spring2009-sklar-lecIV.2 4

strings: input

• there are two ways to read input values from the keyboard into a string variable:

(1) using cin >>

(2) using the getline() function

• the first way, using the >> operator, will only read until the first whitespace character is

read (the term “whitespace” refers to characters like blank spaces, tabs and newlines);

this means that the input will stop as soon as the first whitespace character is read

• for example:

#include <iostream>

#include <string>

using namespace std;

int main() {

string s;

cout << "please enter your name:";

cin >> s;

cout << "s = " << s << endl;

} // end of main()

cis1.5-spring2009-sklar-lecIV.2 5

• if the user enters david ortiz when the program asks

please enter your name:

then the value of s will be ”david”

• HOWEVER, when reading a string variable using the getline() function, the input will

stop as soon as the first newline character is read (i.e., the user hits the ENTER key on

the keyboard), e.g.:

#include <iostream>

#include <string>

using namespace std;

int main() {

string s;

cout << "please enter your name:";

getline(cin, s);

cout << "s = " << s << endl;

} // end of main()

• here, if the user enters david ortiz when the program asks

please enter your name:

then the value of s will be ”david ortiz”

cis1.5-spring2009-sklar-lecIV.2 6

• note that the getline() function can optionally take a third argument, a delimiter

• this would be for cases where you wanted to stop the input not at whitespace or at a

newline, but at some other character— called the delimiter

• suppose you wanted to enter several commands for a robot to follow using one string, like

this:

forward|wait|backward|turn left|stop

• you could do this using the | (vertical bar) character as the delimiter and the getline()

function with three arguments, e.g.:

string s;

cout << "enter some commands: ";

getline(cin, s, ’|’);

If the user entered forward|backward when prompted by the above program, the value

of s would be forward, since the input would stop at the delimiter (|).

You would have to call getline(cin, s, ’|’); again to read the next command

(e.g., wait).

cis1.5-spring2009-sklar-lecIV.2 7

strings: operators

• there are several operators that work with strings

• the plus sign (+) is the concatenation operator, e.g.:

string s1, s2, s3;

s1 = "david ";

s2 = "ortiz";

s3 = s1 + s2;

After the above code fragment, the value of s3 will be ”david ortiz”

• the comparison operators also work with strings

(==, <, <=, >, >=)

cis1.5-spring2009-sklar-lecIV.2 8

• the double equals sign (==) compares the value of two strings and returns true if they are

the same, e.g.:

string s1, s2, s3;

bool a1, a2;

s1 = "david ";

s2 = "ortiz";

s3 = "david ";

a1 = (s1 == s2);

a2 = (s1 == s3);

After the above code fragment:

the value of a1 will be false

and

the value of a2 will be true

cis1.5-spring2009-sklar-lecIV.2 9

• the inequality operators (<, <=, >, >=) perform a lexical comparison between two strings

• a “lexical comparison” is like checking if two strings are in alphabetical order: one is less

than the other if it comes before the other alphabetically

• EXCEPT, the lexical comparison is case sensitive and uses the ASCII table, which means

that all the upper case letters (A..Z) come before (are less than) all the lower case letters

(a..z), e.g.:

string s1, s2, s3;

bool a1, a2;

s1 = "ABC";

s2 = "DEF";

s3 = "abc ";

a1 = (s1 < s2);

a2 = (s3 < s2);

After the above code fragment:

the value of a1 will be true because "ABC" < "DEF"

and

the value of a2 will be false because "abc" > "DEF"

cis1.5-spring2009-sklar-lecIV.2 10

strings: indexes

• a string is like an array of char

• so you can use the index of the individual characters of the string just like you can use the

indexes of the individual elements of an array, like the arrays of ints you created for the

last homework assignment

• if you have:

string s = "ortiz";

then: s[0] is assigned the value o (the letter “oh”)

s[1] is assigned the value r

s[2] is assigned the value t

s[3] is assigned the value i

s[4] is assigned the value z

• you can also use the member function at() to find the value of an individual character of

a string

e.g., instead of using s[3], you can use s.at(3)

cis1.5-spring2009-sklar-lecIV.2 11

strings: length

• if you have:

string s = "ortiz";

then the length of the string is 5

• there are two member functions of the string class that will tell you the length of a

string: length() and size() (they do the same thing)

you call them like this:

string s1;

int n1, n2;

s1 = "ortiz";

n1 = s1.length();

n2 = s1.size();

After this code fragment,

the value of n1 will be 5

and so will the value of n2

cis1.5-spring2009-sklar-lecIV.2 12

strings: searching

• the find() member function is used to locate a substring within a primary string

• the function returns the value of the index in the primary string at which the substring

starts, if the substring exists in the primary string;

or else the function returns the constant string::npos

• for example:

string s1 = "david ortiz";

int n1, n2;

n1 = s1.find("avid", 0);

n2 = s1.find("ask", 0);

After the above code fragment:

the value of n1 will be 1

the value of n2 will be string::npos

• the first argument to the find() function is the substring to search for

• the second argument to the find() function is the index in the primary string at which to

start searching; 0 means to start searching at the beginning of the primary string

cis1.5-spring2009-sklar-lecIV.2 13

strings: editing

• there are three editing member functions that are part of the string class:

– insert()

– replace()

– erase()

• the insert() function inserts a substring into the primary string

• the replace() function replaces a substring with another substring within the primary

string

• the erase() function erases a number of characters within the primary string

• example (on the next page):

cis1.5-spring2009-sklar-lecIV.2 14

#include <iostream>

#include <string>

using namespace std;

int main() {

string s = "ortiz";

cout << "first, s=" << s << endl;

s.insert(0, "david ");

cout << "second, s=" << s << endl;

s.replace(0, 1, "D");

s.replace(6, 1, "O");

cout << "third, s=" << s << endl;

s.erase(1, 4);

cout << "fourth, s=" << s << endl;

} // end main()

The output of the above program will be:

first, s=ortiz

second, s=david ortiz

third, s=David Ortiz

fourth, s=D Ortiz

cis1.5-spring2009-sklar-lecIV.2 15

strings: parsing

• the substr() member function is used to extract a substring from within a primary string

• example:

#include <iostream>

#include <string>

using namespace std;

int main() {

string s1 = "D Ortiz";

string s2;

cout << "s1=" << s1 << endl;

s2 = s1.substr(2, 5);

cout << "s2=" << s2 << endl;

} // end main()

The output of the above program will be:

s1=D Ortiz

s2=Ortiz

cis1.5-spring2009-sklar-lecIV.2 16

