
cis1.5 spring2009 lecture VI.1

today we are going to talk about...

simple classes

• where have we already seen classes?

• why are classes useful?

• how to define and use your own classes and objects

• arrays of objects

• nested classes

cis1.5-spring2009-sklar-lecVI.1 1

simple classes

• classes are ways of organizing programs to provide structure

• a class is a special kind of compound data type

• classes are compound because they have members

• there are two types of members in classes:

– data members

– function members

• the dot operator (.) is used to indicate the member of a class

• you have already used three classes this semester:

– string

– ifstream

– ofstream

• can you think of some of the member functions that belong to these classes?

cis1.5-spring2009-sklar-lecVI.1 2

• here are some of the member functions that belong to these classes:

– string

∗ length(), clear(), erase(), replace(), insert(), find(), substr()

– ifstream:

∗ open(), close(), eof()

– ofstream

∗ open(), close()

• we have also mentioned a few data members, though all of these are actually constants

and so are treated somewhat different from data variables:

– string::npos

– ios::in, ios::out — these belong to the ios class (ifstream and ofstream are

created based on the ios class)

• the syntax with the class name followed by two colons (::) is used to indicate which class

the member after the two colons belongs to.

for example:

– string::npos — string is the name of the class and npos is the name of the

constant data member belonging to that class

cis1.5-spring2009-sklar-lecVI.1 3

– ios::in — ios is the name of the class and in is the name of the constant data

member belonging to that class

– ios::out — ios is the name of the class and out is the name of the constant data

member belonging to that class

• we use these classes by declaring variables whose data type is one of these classes, e.g.:

string x;

• we call x an object of type string

• then we can use the string member functions to operate on the object x, e.g.:

string x;

x.clear();

x.insert(0, "hello");

notice the x. (“x dot”) notation

cis1.5-spring2009-sklar-lecVI.1 4

why are classes useful?

• suppose we wanted to create a program that contains the address book from your cell

phone

• look at your cell phone address book:

– what kind of information is listed for each entry?

– for example:

∗ name (first name and last name)

∗ cell phone number

∗ email address

∗ home phone number

∗ work phone number

• these are called fields

• if we wanted to write a program that stored all this information for everyone in our cell

phone address book, we could do something like example p1.cpp

(we’ll pretend we only have 3 friends...)

cis1.5-spring2009-sklar-lecVI.1 5

example: p1.cpp

/**

* p1.cpp

*

* this program motivates the use of simple classes in C++ by using multiple variables and parallel arrays that are related conceptually, but are not formally connected by the code structure.

*

*/

#include <iostream>

using namespace std;

void readData(string &last_name, string &first_name, string &cell_number, string &email, string &home_number, string &work_number, int &birth_day, int &birth_month, int &birth_year) {

cout << "enter last name: ";

cin >> last_name;

cout << "enter first name: ";

cin >> first_name;

cout << "enter cell number: ";

cin >> cell_number;

cout << "enter email: ";

cin >> email;

cout << "enter home number: ";

cin >> home_number;

cout << "enter work number: ";

cin >> work_number;

cout << "enter birthday (DD MM YY): ";

cin >> birth_day;

cin >> birth_month;

cin >> birth_year;

cout << "thanks!" << endl;

} // end of readData()

void writeData(string last_name, string first_name, string cell_number, string email, string home_number, string work_number, int birth_day, int birth_month, int birth_year) {

cout << "name: " << first_name << " " << last_name << endl;

cout << "phone: " << cell_number << " (C)\n";

cout << " " << home_number << " (H)\n";

cout << " " << work_number << " (W)\n";

cout << "email: " << email << endl;

cout << "birthday: " << birth_day << "/" << birth_month << "/" <<

birth_year << endl;

} // end of writeData()

int main() {

string last_name[3];

string first_name[3];

string cell_number[3];

string email[3];

string home_number[3];

string work_number[3];

int birth_day[3];

int birth_month[3];

int birth_year[3];

cout << "enter data for 3 people...\n";

for (int i=0; i<3; i++) {

readData(last_name[i], first_name[i], cell_number[i], email[i], home_number[i], work_number[i], birth_day[i], birth_month[i], birth_year[i]);

}

cout << "here are all the people...\n";

for (int i=0; i<3; i++) {

writeData(last_name[i], first_name[i], cell_number[i], email[i], home_number[i], work_number[i], birth_day[i], birth_month[i], birth_year[i]);

}

} // end of main()

cis1.5-spring2009-sklar-lecVI.1 6

defining a simple class

• it is annoying to have to keep track of so many parallel arrays! so this is why the notion of

a class is so useful. we can use a class to link together all the fields for each entry in the

cell phone book

• here is a definition of a class that can hold such an entry:
class person {

public:

string last_name;

string first_name;

string cell_number;

string email;

string home_number;

string work_number;

int birth_day;

int birth_month;

int birth_year;

};

– things to notice:

∗ two new C++ keywords: class

and public

∗ there is a semi-colon at the END

OF THE CLASS DEFINITION,

after the last curly brace (})

• example p2.cpp shows the previous example (p1.cpp) re-written using this simple class

(but for only one person—next, we’ll show how to do it with more than one person)

cis1.5-spring2009-sklar-lecVI.1 7

example: p2.cpp

/**

* p2.cpp

*

* this program demonstrates the use of simple classes in C++. the example is similar to p1.cpp, but instead of using separate variables, we group the related variables together into a single class.

*

*/

#include <iostream>

using namespace std;

class person {

public:

string last_name;

string first_name;

string cell_number;

string email;

string home_number;

string work_number;

int birth_day;

int birth_month;

int birth_year;

};

void readData(person &p) {

cout << "enter last name: ";

cin >> p.last_name;

cout << "enter first name: ";

cin >> p.first_name;

cout << "enter cell number: ";

cin >> p.cell_number;

cout << "enter email: ";

cin >> p.email;

cout << "enter home number: ";

cin >> p.home_number;

cout << "enter work number: ";

cin >> p.work_number;

cout << "enter birthday (DD MM YY): ";

cin >> p.birth_day;

cin >> p.birth_month;

cin >> p.birth_year;

cout << "thanks!" << endl;

} // end of readData()

void writeData(person p) {

cout << "name: " << p.first_name << " " << p.last_name << endl;

cout << "phone: " << p.cell_number << " (C)\n";

cout << " " << p.home_number << " (H)\n";

cout << " " << p.work_number << " (W)\n";

cout << "email: " << p.email << endl;

cout << "birthday: " << p.birth_day << "/" << p.birth_month << "/" <<

p.birth_year << endl;

} // end of writeData()

int main() {

person p;

readData(p);

writeData(p);

} // end of main()

cis1.5-spring2009-sklar-lecVI.1 8

arrays of objects

• you can declare an array where the elements in the array are objects (e.g., instead of ints)

• each element in the array is an object of that class

• for example:

person p[3];

shows how to declare an array of 3 elements where each element is an object of type

person

• you address the elements of the class using a combination of the array [] notation and the

dot notation, like this:

p[0].last_name = "sklar";

• example p3.cpp shows the same example as p1.cpp, but with an array of person objects

cis1.5-spring2009-sklar-lecVI.1 9

example: p3.cpp

/**

* p3.cpp

*

* this program demonstrates arrays of simple classes in C++,

* instead of using parallel arrays of separate variables,

* we use a single array of objects.

*

*/

#include <iostream>

using namespace std;

class person {

public:

string last_name;

string first_name;

string cell_number;

string email;

string home_number;

string work_number;

int birth_day;

int birth_month;

int birth_year;

};

void readData(person &p) {

cout << "enter last name: ";

cin >> p.last_name;

cout << "enter first name: ";

cin >> p.first_name;

cout << "enter cell number: ";

cin >> p.cell_number;

cout << "enter email: ";

cin >> p.email;

cout << "enter home number: ";

cin >> p.home_number;

cout << "enter work number: ";

cin >> p.work_number;

cout << "enter birthday (DD MM YY): ";

cin >> p.birth_day;

cin >> p.birth_month;

cin >> p.birth_year;

cout << "thanks!" << endl;

} // end of readData()

void writeData(person p) {

cout << "name: " << p.first_name << " " << p.last_name << endl;

cout << "phone: " << p.cell_number << " (C)\n";

cout << " " << p.home_number << " (H)\n";

cout << " " << p.work_number << " (W)\n";

cout << "email: " << p.email << endl;

cout << "birthday: " << p.birth_day << "/" << p.birth_month << "/" << p.birth_year << endl;

} // end of writeData()

int main() {

person p[3];

int i;

cout << "enter data for 3 people...\n";

for (i=0; i<3; i++) {

readData(p[i]);

}

cout << "here are all the people...\n";

for (i=0; i<3; i++) {

writeData(p[i]);

}

} // end of main()

cis1.5-spring2009-sklar-lecVI.1 10

nested classes

• finally, you can nest classes, which means declare a data member in one class whose data

type is that of another class

• suppose that we wanted to define a special class just for storing the name data:
class name {

public:

string last;

string first;

};

• then we could use the name class when defining the person class:
class person {

public:

name my_name;

string cell_number;

};

• you declare a variable of type person, as before:

person p;

• and you address the elements of a nested class using double dot notation, like this:

p.my_name.last = "sklar";

• example p4.cpp is a modified version of p2.cpp, using two classes

cis1.5-spring2009-sklar-lecVI.1 11

example: p4.cpp

/**

* p4.cpp

*

* this program demonstrates the use of nested simple classes in C++.

* a "nested" class is when you define a data member within a class whose data type is also a (different) class.

*

*/

#include <iostream>

using namespace std;

class name {

public:

string last;

string first;

};

class person {

public:

name my_name;

string cell_number;

string email;

string home_number;

string work_number;

int birth_day;

int birth_month;

int birth_year;

};

void readData(person &p) {

cout << "enter last name: ";

cin >> p.my_name.last;

cout << "enter first name: ";

cin >> p.my_name.first;

cout << "enter cell number: ";

cin >> p.cell_number;

cout << "enter email: ";

cin >> p.email;

cout << "enter home number: ";

cin >> p.home_number;

cout << "enter work number: ";

cin >> p.work_number;

cout << "enter birthday (DD MM YY): ";

cin >> p.birth_day;

cin >> p.birth_month;

cin >> p.birth_year;

cout << "thanks!" << endl;

} // end of readData()

void writeData(person p) {

cout << "name: " << p.my_name.first << " " << p.my_name.last << endl;

cout << "phone: " << p.cell_number << " (C)\n";

cout << " " << p.home_number << " (H)\n";

cout << " " << p.work_number << " (W)\n";

cout << "email: " << p.email << endl;

cout << "birthday: " << p.birth_day << "/" << p.birth_month << "/" << p.birth_year << endl;

} // end of writeData()

int main() {

person p;

readData(p);

writeData(p);

} // end of main()

cis1.5-spring2009-sklar-lecVI.1 12

