
cis3.5, spring 2009, lab IV.3 / prof sklar.

Agent-based/Robotics Programming Lab II

For this lab, you will need a LEGO robot kit, a USB communications tower and a LEGO light sensor.

1 start up RoboLab

• Find the RoboLab icon on your computer and double-click on it to start it up.

• Click on PROGRAMMER. Double-click on INVENTOR 4. Your screen will look like this:

2 find the icons

• Locate the functions palette. See if you can find each of the following icons. Make a note of which
sub-palette each icon belongs to. As you learn what each icon does, write down its function below.

3 loops

• Loops are structures that allow your program to repeat specific tasks again and again.

• All loops have the same basic structure. This includes a set of commands that you want the program
to repeat and something that tells the program when to stop repeating, or “looping”.

should I keep looping?

yes no

of
loop

beginning
code you

want
to

repeat

end 
of

loop loop

next icon
after



• There are three types of loops:

1. Some loops run for a specific number of times. These are called counter controlled loops. We
will use these in this lab.

2. Other types of loops run until a certain condition occurs, for example, go forward until you hit a
wall. Those are called condition controlled loops. We will not use these in this lab.

3. A third type of loop runs forever (i.e., they do not stop unless you force the program to quit in
the middle or turn off the robot). These are called forever loops or infinite loops. We will use
these in this lab.

4 “forever loops” using “jumps”

• In RoboLab, forever loops are implemented using “jumps”.

• Jumps begin with a land icon and end with a jump icon .

• In between the land and the jump is the section of your program that you want to repeat forever.

• Modify your program from the previous lab in which your robot moves in a square: change
the code so that it uses a jump and, instead of copy/pasting the same bits of code four times, repeats
the “go straight and turn” forever. Draw the code in the box below.

5 counter controlled loops

• In RoboLab, counter controlled loops begin with a start of loop icon and end with an end

of loop icon . There is also a loop counter which tells the loop how many times to repeat.

This is specified using the numeric constant icon .

• Note that if you do not assign a loop counter, the default is to loop (i.e., repeat the set of commands
inside the loop) only twice.

• Inside the loop is the section of your program that you want to repeat.

• Modify your program from the previous step so that it uses a loop instead of jumps. Draw
the code in the box below.



6 the LEGO light sensor

• The LEGO light sensor has a transmitter and a receiver. It transmits infrared light (also called ”IR”),
which bounces off objects and then returns in the direction of the receiver. The receiver records a
value indicating how much light it read, which basically tells you about the brightness of the object
that the light sensor is pointing at. The light sensor produces a value between 0 and 100, where 100
means very bright and 0 means very dark.

• Did you know that your TV remote control uses IR to talk to your television?

• Here is how you can see what the light sensor’s value is:

This is done by turning on the RCX and pressing the VIEW button until the arrow at the top
of the screen is under the port the light sensor is plugged into. For example, my light sensor is
connected to port 2. I would turn on the RCX and press the VIEW button twice. Next to the image
of the robot man, there is a number between 0 and 100—this is the value being read by the light sensor.

• In order to use the light sensor, you need to tell the RCX that the light sensor is plugged into port 2
(or whichever port you choose—we’ll use #2 because we’re already using #1 and #3 for the touch
sensors inside the bumper). The easiest way to do this is to write and download a short program that
uses the light sensor plugged into port #2. Try this example:

• Put your robot on at least four different locations: (a) white foamcore or paper, (b) black tape, (c)
green tape, and (d) silver or gold tape. As shown in the previous step, VIEW the different values for
the light sensor and record the values in the table below:

black white green silver/gold
light

sensor
value



• programming challenges

1. Program the robot to go forward until it sees something black, and then stops for one second,
then goes backwards for two seconds.

2. Program the robot to go forward until it sees something silver or gold, and then stops for one
second, then turns to the left and goes forward for two seconds.

7 decision-making

• Up to now, your programs have been sequential and linear. In other words, your programs have been
executing each command, starting from the green light and going until the red light, without skipping
any commands. However there are situations where we might like to program the robot to do one
action (i.e., go forward) when some condition is true (i.e., light sensor sees black) or else do some
other action (i.e., go backward) when the condition is not true (i.e., light sensor sees white). In order
to do this, we need a decision-making mechanism so that our robots can react to their environment
autonomously (i.e., without a human touching it). This decision making ability is based on its sensory
inputs (e.g., the value of the light sensor) and will make the robot a little more intelligent! Decision
making is achieved by conditional execution in the programming environment. In RoboLab, by using
fork structures, we can allow programs to behave differently based on different values of sensor inputs.

• How does a fork work?

– When a fork is reached in a program, one of two branches will be taken based on the value read
from one of the robot’s sensors.

– All of the fork commands on the forks palette use the greater-than (>) or less-than-or-equal (≤)
condition to determine which branch to execute. These conditions are based on a threshold value

. If the value read by the fork’s sensor is greater than the threshold value, then the program
follows the top branch. Otherwise, if the value read by the fork’s sensor is less than or equal to
the threshold value, then the program follows the bottom branch. For example, RoboLab can let
a program make a decision depending on the value it gets from the light sensor when you use

the light sensor fork .

– You must attach the correct port number modifier to the fork where your actual sensor
is conncected.

– A fork merge is required at some point in the program with any fork command. It
completes your conditional structure and brings the two branches of the program back together.



• Example:

– Create this program in RoboLab and use the light sensor value returned when the robot sees black
tape as the threshold value. REMEMBER:

∗ The light sensor fork requires you to specify a threshold value. For instance, the above example
uses a light sensor fork with a threshold value of 35—but you need to calibrate your robot to
determine which value it reads when it sees black tape, and then replace 35 with that value.

∗ Don’t forget to attach the correct port number to the fork. For example, our light sensor is
attached to port 2.

• programming challenge

1. Program the robot to go forward. If it sees something black, it should stop for one second, then
go backwards for two seconds, then go forward again. If it sees something silver or gold, it should
stop for one second, then turn to the left and go forward again. It should do this behavior forever.

First, draw a flowchart, like the one above, to describe the way you want your robot to behave.

Then, write the code in RoboLab and when it works, copy it below.


