
cis20.2

design and implementation of software applications 2

spring 2010

lecture # I.2

today’s topics:

• software engineering overview

• software processes

cis20.2-spring2010-sklar-lecI.2 1

the software world...

cis20.2-spring2010-sklar-lecI.2 2

software engineering?

• in school, you learn the mechanics of programming

• you are given the specifications

• you know that it is possible to write the specified program in the time allotted

• but not so in the real world...

what if the specifications are not possible? what if the timeframe is not realistic? what if

you had to write a program that would last for 10 years?

• in the real world:

software is usually late, overbudget and broken; and software usually lasts longer than

employees or hardware

• the real world is cruel and software is fundamentally brittle

• in addition: most software ends up being used in very different ways than how it was

designed to be used

• hence the field of software engineering was established in order to produce proven

methodologies that attempt overcome these real-world issues

cis20.2-spring2010-sklar-lecI.2 3

software engineering: one definition

• Stephen Schach: “Software engineering is a discipline whose aim is the production of

fault-free software, delivered on time and within budget, that satisfies the user’s needs.”

• software engineering includes the following:

– requirements analysis

– human factors

– functional specification

– software architecture

– design methods

– programming for reliability

– programming for maintainability

– team programming methods

– testing methods

– configuration management

cis20.2-spring2010-sklar-lecI.2 4



software engineering: beneficiaries

• the average manager has no idea how software needs to be implemented

• the average customer says: “build me a system to do X”

• the average layperson thinks software can do anything (or nothing)

• the average programmer or software engineer has the following issues:

– there is never enough time for development and testing

– software is often underbudgeted

– the customer always wants it now! (even though they don’t know how long it will take

to write it and test it)

– common pitfalls from customers and management:

“Why can’t you add feature X? It seems so simple...”

“I thought it would take a week...”

“We’ve got to get it out next week. Hire 5 more programmers...”

cis20.2-spring2010-sklar-lecI.2 5

software engineering: the programmer’s dilemma

• you can’t do everything yourself

• e.g., your assignment: “write a database-backed web system”

• where do you start?

• what do you need to write?

• do you know how to write a device driver?

• do you know what a device driver is?

• should you integrate a browser into your operating system?

• how do you know if it’s working?

cis20.2-spring2010-sklar-lecI.2 6

software engineering: complexity

• software is complex!

• or it becomes that way

– feature bloat

– patching

• e.g., the evolution of Windows NT

– NT 3.1 had 6,000,000 lines of code

– NT 3.5 had 9,000,000v

– NT 4.0 had 16,000,000

– Windows 2000 has 30-60 million

– Windows XP has at least 45 million...

cis20.2-spring2010-sklar-lecI.2 7

software engineering: necessity

• you will need these skills!

• risks of faulty software include

– loss of money

– loss of job

– loss of equipment

– loss of life

• classic examples

– therac-25 (http://sunnyday.mit.edu/papers/therac.pdf) linear accelerator

used in mid-1980’s to treat cancer patients with limited doses of radiation; system

produced cryptic error messages that operators could not understand and so ignored;

patients received overdoses of radiation and some died

– ariane 501 (http://sunnyday.mit.edu/papers/jsr.pdf) european space agency

rocket launched in mid-1990’s; recalibration routine computed position, velocity,

acceleration; one step in recalibration converted floating point value of horizontal

velocity to integer, but didn’t handle “out of bounds” exception... rocket blew up

cis20.2-spring2010-sklar-lecI.2 8



software engineering: Fred Brooks

• The Mythical Man-Month (1975)

– book written after his experiences in the OS/360 design

– Brooks’ Law: “Adding manpower to a late software project makes it later.”

– the “black hole” of large project design: getting stuck and getting out

– organizing large team projects and communication; documentation!!!

– when to keep code; when to throw code away

– dealing with limited machine resources

– most are supplemented with practical experience

• No Silver Bullet (1986)

– “There is no single development, in either technology or management technique, which

by itself promises even one order-of magnitude improvement within a decade of

productivity, in reliability, in simplicity.”

– why? software is inherently complex; many disagree... but no proven counter-argument

– Brooks’ point: there is no revolution, but there is evolution when it comes to software

development

cis20.2-spring2010-sklar-lecI.2 9

mechanics

• well-established techniques and methodologies:

– team structures

– software lifecycle / waterfall model

– cost and complexity planning / estimation

– reusability, portability, interoperability, scalability

– UML, design patterns

cis20.2-spring2010-sklar-lecI.2 10

team structures

• why Brooks’ Law?

– training time

– increased communications: pairs grow by n
2 while people/work grows by n

– how to divide software? this is not task sharing

• types of teams

– democratic

– “chief programmer”

– synchronize-and-stabilize teams

– eXtreme Programming teams

– pair programming

cis20.2-spring2010-sklar-lecI.2 11

lifecycles

• software is not a build-one-and-throw-away process

• that’s far too expensive

• so software has a lifecycle

• we need to implement a process so that software is maintained correctly

• examples:

– build-and-fix

– waterfall

– Agile

cis20.2-spring2010-sklar-lecI.2 12



software lifecycle model

• 7 basic phases (Schach):

– requirements (2%)

– specification/analysis (5%)

– design (6%)

– implementation (module coding and testing) (12%)

– integration (8%)

– maintenance (67%)

– retirement

• percentages in ()’s are average cost of each task during 1976-1981

• testing and documention should occur throughout each phase

• note which is the most expensive!

cis20.2-spring2010-sklar-lecI.2 13

requirements phase

• what are we doing, and why?

• need to determine what the client needs, not what the client wants or thinks they need

• worse — requirements are a moving target!

• common ways of building requirements include:

– prototyping

– natural-language requirements document

• use interviews to get information (not easy!)

cis20.2-spring2010-sklar-lecI.2 14

specification phase

• the “contract” — frequently a legal document

• what the product will do, not how to do it

• should NOT be:

– ambiguous, e.g., “optimal”

– incomplete, e.g., omitting modules

– contradictory

• detailed, to allow cost and duration estimation

• classical vs object-oriented (OO) specification

– classical: flow chart, data-flow diagram

– object-oriented: UML

cis20.2-spring2010-sklar-lecI.2 15

design phase

• the “how” of the project

• fills in the underlying aspects of the specification

• design decisions last a long time!

• even after the finished product

– maintenance documentation

– try to leave it open-ended

• architectural design: decompose project into modules

• detailed design: each module (data structures, algorithms)

• UML can also be useful for design

cis20.2-spring2010-sklar-lecI.2 16



implementation phase

• implement the design in programming language(s)

• observe standardized programming mechanisms

• testing: code review, unit testing

• documentation: commented code, test cases

• integration considerations

– combine modules and check the whole product

– top-down vs bottom-up ?

– testing: product and acceptance testing; code review

– documentation: commented code, test cases

– done continually with implementation (can’t wait until the last minute!)

cis20.2-spring2010-sklar-lecI.2 17

maintenance phase

• defined by Schach as any change

• by far the most expensive phase

• poor (or lost) documentation often makes the situation even worse

• programmers hate it

• several types:

– corrective (bugs)

– perfective (additions to improve)

– adaptive (system or other underlying changes)

• testing maintenance: regression testing (will it still work now that I’ve fixed it?)

• documentation: record all the changes made and why, as well as new test cases

cis20.2-spring2010-sklar-lecI.2 18

retirement phase

• the last phase, of course

• why retire?

– changes too drastic (e.g., redesign)

– too many dependencies (“house of cards”)

– no documentation

– hardware obsolete

• true retirement rate: product no longer useful

cis20.2-spring2010-sklar-lecI.2 19


