
cis20.2

design and implementation of software applications 2

spring 2010

lecture # I.4

today’s topics:

• software testing

cis20.2-spring2010-sklar-lecI.4 1

software testing

• “the process of executing a program with the intent of finding errors” [Myers 1979]

• physical systems tend to fail in a few, small (fixed) set of ways;

software systems tend to fail in many (strange) ways

• physical systems tend to fail due to manufacturer errors;

software systems tend to fail due to design errors

• physical systems tend to fail with age, usage;

software systems can fail at any time...

• even small modules can be computationally complex

• exhaustive testing is not tractable: a program that adds two 32-bit integers would take

hundreds of years to test exhaustively (264 distinct test cases)

• fixing bugs may introduce new (often more subtle) bugs

cis20.2-spring2010-sklar-lecI.4 2

why test software?

• to improve quality

– bugs can be costly ($ and lives... remember examples of ariane and therac)

– quality implies conforming to design requirements

• for verification and validation

– funcionality (exterior quality)

– engineering (interior quality)

– adaptability (future quality)

• for reliability estimation

cis20.2-spring2010-sklar-lecI.4 3

classifications

• by purpose:

– correctness testing

– performance testing

– reliability testing

– security testing

• by life-cycle phase:

– requirements phase testing

– design phase testing

– program phase testing

– evaluation test results

– installation phase testing

– acceptance testing

– maintenance testing

cis20.2-spring2010-sklar-lecI.4 4



• by scope

– unit testing

– component testing

– integration testing

– system testing

cis20.2-spring2010-sklar-lecI.4 5

correctness testing

• minimum requirement of software testing

• need to be able to tell correct from incorrect behavior

• “white-box” and “black-box” methods

• black-box testing

– also called “data driven” testing

– test data are derived from functional requirements

– testing involves providing inputs to a module and testing the resulting outputs; hence

the name “black box”

– only testing the functionality

• white-box testing

– also called “glass box” testing

– structure and flow of module being tested is visible

– test cases are derived from program structure

– some degree of exhaustion is desirable, e.g., executing every line of code at least once

cis20.2-spring2010-sklar-lecI.4 6

• other methods: control flow testing, mutation testing, random testing

• control flow testing

– also called/includes loop testing and data-flow testing

– program flow is mapped in a flowchart

– code is tested according to this flow

– can be used to eliminate redundant or unused code

• mutation testing

– original program code is perturbed and result is many new programs

– all are tested—the most effective test cases/data are chosen based on which eliminate

the most mutant programs

– but this is (even more) exhaustive and intractable

• random testing

– test caes are chosen randomly

– cost effective, but won’t necessarily hit all the important cases

• combinations of above yield best results in terms of completeness/effectiveness of testing,

tractability and cost

cis20.2-spring2010-sklar-lecI.4 7

performance testing

• e.g., make sure that software doesn’t take infinite time to run or require infinite resources

• performance evaluation considers:

– resource usage

e.g., network bandwidth requirements, CPU cycles, disk space, disk access operations,

memory usage

– throughput

– stimulus-response timing

– queue lengths

• benchmarking frequently used here

cis20.2-spring2010-sklar-lecI.4 8



reliability testing

• determination of failure-free system operation

• dependable software does not fail in unexpected or catastrophic ways

• “robustness” means the degree to which software can function when it receives unexpected

inputs or within stressful conditions

• “stress testing” or “load testing” pushes the software/system beyond the typical limits to

see if/when it will fail

cis20.2-spring2010-sklar-lecI.4 9

security testing

• refers to testing for flaws that can be exploited by security holes

• particularly relevant to software that runs on the internet

• simulated security attacks help test this category

cis20.2-spring2010-sklar-lecI.4 10

testing automation

• software testing tools help cut costs of manual testing

• typically involve the use of test scripts

• which are also costly to create

• so are used in cases where they are less costly to create and run than manual testing

cis20.2-spring2010-sklar-lecI.4 11

when to stop?

• never! (hehe)

• there are always two more bugs—the one you know about and the one you don’t...

• trade-offs between budget, time, quality

• choices must be made...

• alternatives?

– buggy software/systems?

– some kind(s) of testing is necessary

– “proofs” using formal methods

– do you think the use of design patterns may help reduce testing?

cis20.2-spring2010-sklar-lecI.4 12



software testing: conclusions

• software testing is an art

• testing is more than just debugging

• testing is expensive

• complete testing is infeasible

• testing may not be the most effective way to improve software quality

cis20.2-spring2010-sklar-lecI.4 13

test scenarios

• a scenario is a “hypothetical story used to help a person think through a complex problem

or system”

• the idea of “scenario planning” gained popularity in the 2nd half of the 1900’s

• can be useful for illustrating a point, as well as testing a system

• ideal scenario has five characteristics:

– a story that is

– motivating

– credible

– complex

– easy to evaluate

• storytelling is an art, but a good scenario is a good story!

• risks and problems:

– other approaches are better for testing early code

– not designed for coverage of an entire system

cis20.2-spring2010-sklar-lecI.4 14

– often heavily documented and used repeatedly, but often expose design errors rather

than implementation (coding) errors

• scenario testing vs requirements analysis

– requirements analysis is used to create agreement about a system to be built; scenario

testing is used to predict problems with a system

– scenario testing only needs to point out problems, not solve them, reach conclusions or

make recommendations about what to do about them

– scenario testing does not make design trade-offs, but can expose consequences of

trade-offs

– scenario testing does not need to be exhaustive, only useful

cis20.2-spring2010-sklar-lecI.4 15

creating test scenarios

• write life histories for objects in the system

• list possible users; analyze their interests and objectives

• list “system events” and “special events”

• list benefits and create end-to-end tasks to check them

• interview users about famous challenges and failures of the old system

• work alongside users to see how they work and what they do

• read aobut what systems like this are supposed to do

• study complaints about he predecessor to this system and/or its competitors

• create a mock business; treat it as real and process its data

(from Kaner article)

cis20.2-spring2010-sklar-lecI.4 16


