
10

SOME BACKGROUND ON DESIGN PATTERNS
The term “design patterns” sounds a bit formal to the uninitiated and

can be somewhat off-putting when you first encounter it. But, in fact, design
patterns are just convenient ways of reusing object-oriented code between
projects and between programmers. The idea behind design patterns is
simple-- write down and catalog common interactions between objects that
programmers have frequently found useful.

The field of design patterns goes back at least to the early 1980s. At
that time, Smalltalk was the most common OO language and C++ was still in
its infancy. At that time, structured programming was a commonly-used
phrased and OO programming was not yet as widely supported. The idea of
programming frameworks was popular however, and as frameworks
developed, some of what we now called design patterns began to emerge.

One of the frequently cited frameworks was the Model-View-
Controller framework for Smalltalk [Krasner and Pope, 1988], which divided
the user interface problem into three parts. The parts were referred to as a
data model which contain the computational parts of the program, the view,
which presented the user interface, and the controller, which interacted
between the user and the view.

Each of these aspects of the problem is a separate object and each has
its own rules for managing its data. Communication between the user, the
GUI and the data should be carefully controlled and this separation of
functions accomplished that very nicely. Three objects talking to each other
using this restrained set of connections is an example of a powerful design
pattern.

ViewController

Data
model

11

In other words, design patterns describe how objects communicate
without become entangled in each other’s data models and methods. Keeping
this separation has always been an objective of good OO programming, and if
you have been trying to keep objects minding their own business, you are
probably using some of the common design patterns already. Interestingly
enough, the MVC pattern has resurfaced now and we find it used in Java 1.2
as part of the Java Foundation Classes (JFC, or the “Swing” components).

Design patterns began to be recognized more formally in the early
1990s by Helm (1990) and Erich Gamma (1992), who described patterns
incorporated in the GUI application framework, ET++. The culmination of
these discussions and a number of technical meetings was the publication of
the parent book in this series, Design Patterns -- Elements of Reusable
Software, by Gamma, Helm, Johnson and Vlissides.(1995). This book,
commonly referred to as the Gang of Four or “GoF” book, has had a powerful
impact on those seeking to understand how to use design patterns and has
become an all-time best seller. We will refer to this groundbreaking book as
Design Patterns, throughout this book and The Design Patterns Smalltalk
Companion (Alpert, Brown and Woolf, 1998) as the Smalltalk Companion.

Defining Design Patterns
We all talk about the way we do things in our everyday work,

hobbies and home life and recognize repeating patterns all the time.

• Sticky buns are like dinner rolls, but I add brown sugar and nut filling to
them.

• Her front garden is like mine, but, in mine I use astilbe.

• This end table is constructed like that one, but in this one, the doors
replace drawers.

We see the same thing in programming, when we tell a colleague
how we accomplished a tricky bit of programming so he doesn’t have to
recreate it from scratch. We simply recognize effective ways for objects to
communicate while maintaining their own separate existences.

Some useful definitions of design patterns have emerged as the
literature in his field has expanded:

• “Design patterns are recurring solutions to design problems you see over
et. al., 1998).

12

• “Design patterns constitute a set of rules describing how to accomplish
certain tasks in the realm of software development.” (Pree, 1994)

• “Design patterns focus more on reuse of recurring architectural design
themes, while frameworks focus on detailed design… and
implementation.” (Coplien & Schmidt, 1995).

• “A pattern addresses a recurring design problem that arises in specific
design situations and presents a solution to it” (Buschmann, et. al. 1996)

• “Patterns identify and specify abstractions that are above the level of
single classes and instances, or of components.” (Gamma, et al., 1993)

But while it is helpful to draw analogies to architecture, cabinet
making and logic, design patterns are not just about the design of objects, but
about the communication between objects. In fact, we sometimes think of
them as communication patterns. It is the design of simple, but elegant,
methods of communication that makes many design patterns so important.

Design patterns can exist at many levels from very low level specific
solutions to broadly generalized system issues. There are now in fact
hundreds of patterns in the literature. They have been discussed in articles
and at conferences of all levels of granularity. Some are examples which have
wide applicability and a few (Kurata, 1998) solve but a single problem.

It has become apparent that you don’t just write a design pattern off
the top of your head. In fact, most such patterns are discovered rather than
written. The process of looking for these patterns is called “pattern mining,”
and is worthy of a book of its own.

The 23 design patterns selected for inclusion in the original Design
Patterns book were ones which had several known applications and which
were on a middle level of generality, where they could easily cross
application areas and encompass several objects.

The authors divided these patterns into three types creational,
structural and behavioral.

• Creational patterns are ones that create objects for you, rather than
having you instantiate objects directly. This gives your program more
flexibility in deciding which objects need to be created for a given case.

• Structural patterns help you compose groups of objects into larger
structures, such as complex user interfaces or accounting data.

13

• Behavioral patterns help you define the communication between objects
in your system and how the flow is controlled in a complex program.

We’ll be looking at Java versions of these patterns in the chapters that
follow.

This Book and its Parentage
Design Patterns is a catalog of 23 generally useful patterns for

writing object-oriented software. It is written as a catalog with short examples
and substantial discussions of how the patterns can be constructed and
applied. Most of its examples are in C++, with a few in Smalltalk. The
Smalltalk Companion (Alpert, 1998) follows a similar approach, but with
somewhat longer examples, all in Smalltalk. Further, the authors present
some additional very useful advice on implementing and using these patterns.

This book takes a somewhat different approach; we provide at least
one complete, visual Java program for each of the 23 patterns. This way you
can not only examine the code snippets we provide, but run, edit and modify
the complete working programs on the accompanying CD-ROM. You’ll find
a list of all the programs on the CD-ROM in Appendix A.

The Learning Process
We have found learning Design patterns is a multiple step process.

1. Acceptance

2. Recognition

3. Internalization

First, you accept the premise that design patterns are important in your work.
Then, you recognize that you need to read about design patterns in order to
know when you might use them. Finally, you internalize the patterns in
sufficient detail that you know which ones might help you solve a given
design problem.

For some lucky people, design patterns are obvious tools and they grasp their
essential utility just by reading summaries of the patterns. For many of the
rest of us, there is a slow induction period after we’ve read about a pattern
followed by the proverbial “Aha!” when we see how we can apply them in
our work. This book helps to take you to that final stage of internalization by
providing complete, working programs that you can try out for yourself.

14

The examples in Design Patterns are brief, and are in C++ or in some
cases, Smalltalk. If you are working in another language it is helpful to have
the pattern examples in your language of choice. This book attempts to fill
that need for Java programmers.

A set of Java examples takes on a form that is a little different than in
C++, because Java is more strict in its application of OO precepts -- you can’t
have global variables, data structures or pointers. In addition, we’ll see that
the Java interfaces and abstract classes are a major contributor to how we
build Java design patterns.

Studying Design Patterns
There are several alternate ways to become familiar with these

patterns. In each approach, you should read this book and the parent Design
Patterns book in one order or the other. We also strongly urge you to read the
Smalltalk Companion for completeness, since it provides an alternate
description of each of the patterns. Finally, there are a number of web sites on
learning and discussing Design Patterns for you to peruse.

Notes on Object Oriented Approaches
The fundamental reason for using varies design patterns is to keep

classes separated and prevent them from having to know too much about one
another. There are a number of strategies that OO programmers use to
achieve this separation, among them encapsulation and inheritance.

Nearly all languages that have OO capabilities support inheritance. A
class that inherits from a parent class has access to all of the methods of that
parent class. It also has access to all of its non-private variables. However, by
starting your inheritance hierarchy with a complete, working class you may
be unduly restricting yourself as well as carrying along specific method
implementation baggage. Instead, Design Patterns suggests that you always

Program to an interface and not to an implementation.

Purring this more succinctly, you should define the top of any class hierarchy
with an abstract class, which implements no methods, but simply defines the
methods that class will support. Then, in all of your derived classes you have
more freedom to implement these methods as most suits your purposes.

The other major concept you should recognize is that of object composition.
This is simply the construction of objects that contain others: encapsulation of

15

several objects inside another one. While many beginning OO programmers
use inheritance to solve every problem, as you begin to write more elaborate
programs, the merits of object composition become apparent. Your new
object can have the interface that is best for what you want to accomplish
without having all the methods of the parent classes. Thus, the second major
precept suggested by Design Patterns is

Favor object composition over inheritance.

At first this seems contrary to the customs of OO programming, but you will
see any number of cases among the design patterns where we find that
inclusion of one or more objects inside another is the preferred method.

The Java Foundation Classes
The Java Foundation Classes (JFC) which were introduced after Java

1.1 and incorporated into Java 1.2 are a critical part of writing good Java
programs. These were also known during development as the “Swing” classes
and still are informally referred to that way. They provide easy ways to write
very professional-looking user interfaces and allow you to vary the look and
feel of your interface to match the platform your program is running on.
Further, these classes themselves utilize a number of the basic design patterns
and thus make extremely good examples for study.

Nearly all of the example programs in this book use the JFC to
produce the interfaces you see in the example code. Since not everyone may
be familiar with these classes, and since we are going to build some basic
classes from the JFC to use throughout our examples, we take a short break
after introducing the creational patterns and spend a chapter introducing the
JFC. While the chapter is not a complete tutorial in every aspect of the JFC, it
does introduce the most useful interface controls and shows how to use them.

Many of the examples do require that the JFC libraries are installed,
and we describe briefly what Jar files you need in this chapter as well.

Java Design Patterns
Each of the 23 design patterns in Design Patterns is discussed in the

chapters that follow, along with at least one working program example for
that pattern. The authors of Design Patterns have suggested that every
pattern start with an abstract class and that you derive concrete working

16

classes from that abstraction. We have only followed that suggestion in cases
where there may be several examples of a pattern within a program. In other
cases, we start right in with a concrete class, since the abstract class only
makes the explanation more involved and adds little to the elegance of the
implementation.

James W. Cooper
Wilton, Connecticut

Nantucket, Massachusetts

17

Creational Patterns
All of the creational patterns deal with the best way to create

instances of objects. This is important because your program should not
depend on how objects are created and arranged. In Java, of course, the
simplest way to create an instance of an object is by using the new operator.

Fred = new Fred(); //instance of Fred class

However, this really amounts to hard coding, depending on how you
create the object within your program. In many cases, the exact nature of the
object that is created could vary with the needs of the program and
abstracting the creation process into a special “creator” class can make your
program more flexible and general.

The Factory Method provides a simple decision making class that
returns one of several possible subclasses of an abstract base class depending
on the data that are provided.

The Abstract Factory Method provides an interface to create and
return one of several families of related objects.

The Builder Pattern separates the construction of a complex object
from its representation, so that several different representations can be created
depending on the needs of the program.

The Prototype Pattern starts with an initialized and instantiated
class and copies or clones it to make new instances rather than creating new
instances.

The Singleton Pattern is a class of which there can be no more than
one instance. It provides a single global point of access to that instance.

18

THE FACTORY PATTERN
One type of pattern that we see again and again in OO programs is

the Factory pattern or class. A Factory pattern is one that returns an instance
of one of several possible classes depending on the data provided to it.
Usually all of the classes it returns have a common parent class and common
methods, but each of them performs a task differently and is optimized for
different kinds of data.

How a Factory Works
To understand a Factory pattern, let’s look at the Factory diagram

below.

Factory

x

xy xz
getClass

abc

x

In this figure, x is a base class and classes xy and xz are derived from
it. The Factory is a class that decides which of these subclasses to return
depending on the arguments you give it. On the right, we define a getClass
method to be one that passes in some value abc, and that returns some
instance of the class x. Which one it returns doesn't matter to the programmer
since they all have the same methods, but different implementations. How it
decides which one to return is entirely up to the factory. It could be some very
complex function but it is often quite simple.

Sample Code
Let's consider a simple case where we could use a Factory class.

Suppose we have an entry form and we want to allow the user to enter his
name either as “firstname lastname” or as “lastname, firstname”. We’ll make

19

the further simplifying assumption that we will always be able to decide the
name order by whether there is a comma between the last and first name.

This is a pretty simple sort of decision to make, and you could make
it with a simple if statement in a single class, but let’s use it here to illustrate
how a factory works and what it can produce. We’ll start by defining a simple
base class that takes a String and splits it (somehow) into two names:
class Namer {
//a simple class to take a string apart into two names
 protected String last; //store last name here
 protected String first; //store first name here

 public String getFirst() {
 return first; //return first name
 }
 public String getLast() {
 return last; //return last name
 }
}

In this base class we don’t actually do anything, but we do provide
implementations of the getFirst and getLast methods. We’ll store the split
first and last names in the Strings first and last, and, since the derived classes
will need access to these variables, we’ll make them protected.

The Two Derived Classes
Now we can write two very simple derived classes that split the name

into two parts in the constructor. In the FirstFirst class, we assume that
everything before the last space is part of the first name:
class FirstFirst extends Namer { //split first last
 public FirstFirst(String s) {
 int i = s.lastIndexOf(" "); //find sep space
 if (i > 0) {
 //left is first name
 first = s.substring(0, i).trim();

 //right is last name
 last =s.substring(i+1).trim();

 }
else {
 first = “”; // put all in last name

 last = s; // if no space
 }
 }
}

20

And, in the LastFirst class, we assume that a comma delimits the last
name. In both classes, we also provide error recovery in case the space or
comma does not exist.

class LastFirst extends Namer { //split last, first
 public LastFirst(String s) {
 int i = s.indexOf(","); //find comma
 if (i > 0) {
 //left is last name

 last = s.substring(0, i).trim();
 //right is first name
 first = s.substring(i + 1).trim();

 }
 else {
 last = s; // put all in last name
 first = ""; // if no comma
 }
 }
}

Building the Factory
Now our Factory class is extremely simple. We just test for the

existence of a comma and then return an instance of one class or the other:
class NameFactory {
//returns an instance of LastFirst or FirstFirst
//depending on whether a comma is found
 public Namer getNamer(String entry) {
 int i = entry.indexOf(","); //comma determines name
order
 if (i>0)
 return new LastFirst(entry); //return one class
 else
 return new FirstFirst(entry); //or the other
 }
}

Using the Factory
Let’s see how we put this together.

We have constructed a simple Java user interface that allows you to
enter the names in either order and see the two names separately displayed.
You can see this program below.

21

You type in a name and then click on the Compute button, and the
divided name appears in the text fields below. The crux of this program is the
compute method that fetches the text, obtains an instance of a Namer class
and displays the results.

In our constructor for the program, we initialize an instance of the
factory class with
NameFactory nfactory = new NameFactory();

Then, when we process the button action event, we call the
computeName method, which calls the getNamer factory method and then
calls the first and last name methods of the class instance it returns:
private void computeName() {
 //send the text to the factory and get a class back
 namer = nfactory.getNamer(entryField.getText());

 //compute the first and last names
 //using the returned class
 txFirstName.setText(namer.getFirst());
 txLastName.setText(namer.getLast());
 }

And that’s the fundamental principle of Factory patterns. You create
an abstraction which decides which of several possible classes to return and
returns one. Then you call the methods of that class instance without ever

22

knowing which derived class you are actually using. This approach keeps the
issues of data dependence separated from the classes’ useful methods. You
will find the complete code for Namer.java on the example CD-ROM.

Factory Patterns in Math Computation
Most people who use Factory patterns tend to think of them as tools

for simplifying tangled programming classes. But it is perfectly possible to
use them in programs that simply perform mathematical computations. For
example, in the Fast Fourier Transform (FFT), you evaluate the following
four equations repeatedly for a large number of point pairs over many passes
through the array you are transforming. Because of the way the graphs of
these computations are drawn, these equations constitute one instance of the
FFT “butterfly.” These are shown as Equations 1--4.

(1)

 (2)

(3)

(4)

However, there are a number of times during each pass through the
data where the angle y is zero. In this case, your complex math evaluation
reduces to Equations (5-8):

(5)

(6)

(7)

(8)

So it is not unreasonable to package this computation in a couple of
classes doing the simple or the expensive computation depending on the
angle y. We’ll start by creating a Complex class that allows us to manipulate
real and imaginary number pairs:
class Complex {
 float real;
 float imag;
}

It also will have appropriate get and set functions.

)cos()sin(
)cos()sin(
)sin()cos(
)sin()cos(

221
'
2

221
'
1

221
'
2

221
'
1

yIyRII
yIyRII
yIyRRR
yIyRRR

−−=

++=

+−=

−+=

21
'
2

21
'
1

21
'
2

21
'
1

III
III
RRR
RRR

−=

+=

−=

+=

23

Then we’ll create our Butterfly class as an abstract class that we’ll fill
in with specific descendants:
abstract class Butterfly {
 float y;
 public Butterfly() {
 }
 public Butterfly(float angle) {
 y = angle;
 }
 abstract public void Execute(Complex x, Complex y);
}

Our two actual classes for carrying out the math are called
addButterfly and trigButterfly. They implement the computations shown in
equations (1--4) and (5--8) above.
class addButterfly extends Butterfly {
 float oldr1, oldi1;

 public addButterfly(float angle) {
 }
 public void Execute(Complex xi, Complex xj) {
 oldr1 = xi.getReal();
 oldi1 = xi.getImag();
 xi.setReal(oldr1 + xj.getReal()); //add and subtract
 xj.setReal(oldr1 - xj.getReal());
 xi.setImag(oldi1 + xj.getImag());
 xj.setImag(oldi1 - xj.getImag());
 }
}

and for the trigonometic version:
class trigButterfly extends Butterfly {
 float y;
 float oldr1, oldi1;
 float cosy, siny;
 float r2cosy, r2siny, i2cosy, i2siny;

 public trigButterfly(float angle) {
 y = angle;
 cosy = (float) Math.cos(y);//precompute sine and cosine
 siny = (float)Math.sin(y);

 }
 public void Execute(Complex xi, Complex xj) {
 oldr1 = xi.getReal(); //multiply by cos and sin
 oldi1 = xi.getImag();
 r2cosy = xj.getReal() * cosy;
 r2siny = xj.getReal() * siny;
 i2cosy = xj.getImag()*cosy;

24

 i2siny = xj.getImag()*siny;
 xi.setReal(oldr1 + r2cosy +i2siny); //store sums
 xi.setImag(oldi1 - r2siny +i2cosy);
 xj.setReal(oldr1 - r2cosy - i2siny);
 xj.setImag(oldi1 + r2siny - i2cosy);
 }
}

Finally, we can make a simple factory class that decides which class
instance to return. Since we are making Butterflies, we’ll call our Factory a
Cocoon:
class Cocoon {
 public Butterfly getButterfly(float y) {
 if (y !=0)
 return new trigButterfly(y); //get multiply class
 else
 return new addButterfly(y); //get add/sub class
 }
}

You will find the complete FFT.java program on the example
CDROM.

When to Use a Factory Pattern
You should consider using a Factory pattern when

• A class can’t anticipate which kind of class of objects it must create.

• A class uses its subclasses to specify which objects it creates.

• You want to localize the knowledge of which class gets created.

There are several similar variations on the factory pattern to
recognize.

1. The base class is abstract and the pattern must return a complete working
class.

2. The base class contains default methods and is only subclassed for cases
where the default methods are insufficient.

3. Parameters are passed to the factory telling it which of several class types
to return. In this case the classes may share the same method names but
may do something quite different.

25

Thought Questions
1. Consider a personal checkbook management program like Quicken. It

manages several bank accounts and investments and can handle your bill
paying. Where could you use a Factory pattern in designing a program
like that?

2. Suppose are writing a program to assist homeowners in designing
additions to their houses. What objects might a Factory be used to
produce?

80

Structural Patterns
Structural patterns describe how classes and objects can be combined

to form larger structures. The difference between class patterns and object
patterns is that class patterns describe how inheritance can be used to provide
more useful program interfaces. Object patterns, on the other hand, describe
how objects can be composed into larger structures using object composition,
or the inclusion of objects within other objects.

For example, we’ll see that the Adapter pattern can be used to make
one class interface match another to make programming easier. We’ll also
look at a number of other structural patterns where we combine objects to
provide new functionality. The Composite, for instance, is exactly that: a
composition of objects, each of which may be either simple or itself a
composite object. The Proxy pattern is frequently a simple object that takes
the place of a more complex object that may be invoked later, for example
when the program runs in a network environment.

The Flyweight pattern is a pattern for sharing objects, where each
instance does not contain its own state, but stores it externally. This allows
efficient sharing of objects to save space, when there are many instances, but
only a few different types.

The Façade pattern is used to make a single class represent an entire
subsystem, and the Bridge pattern separates an object’s interface from its
implementation, so you can vary them separately. Finally, we’ll look at the
Decorator pattern, which can be used to add responsibilities to objects
dynamically.

You’ll see that there is some overlap among these patterns and even
some overlap with the behavioral patterns in the next chapter. We’ll
summarize these similarities after we describe the patterns.

81

THE ADAPTER PATTERN

The Adapter pattern is used to convert the programming interface of
one class into that of another. We use adapters whenever we want unrelated
classes to work together in a single program. The concept of an adapter is
thus pretty simple; we write a class that has the desired interface and then
make it communicate with the class that has a different interface.

There are two ways to do this: by inheritance, and by object
composition. In the first case, we derive a new class from the nonconforming
one and add the methods we need to make the new derived class match the
desired interface. The other way is to include the original class inside the new
one and create the methods to translate calls within the new class. These two
approaches, termed class adapters and object adapters are both fairly easy to
implement in Java.

Moving Data between Lists
Let’s consider a simple Java program that allows you to enter names

into a list, and then select some of those names to be transferred to another
list. Our initial list consists of a class roster and the second list, those who
will be doing advanced work.

In this simple program, you enter names into the top entry field and
click on Insert to move the names into the left-hand list box. Then, to move

82

names to the right-hand list box, you click on them, and then click on Add.
To remove a name from the right hand list box, click on it and then on
Remove. This moves the name back to the left-hand list.

This is a very simple program to write in Java 1.1. It consists of a
GUI creation constructor and an actionListener routine for the three buttons:
public void actionPerformed(ActionEvent e)
 {
 Button b = (Button)e.getSource();
 if(b == Add)
 addName();
 if(b == MoveRight)
 moveNameRight();
 if(b == MoveLeft)
 moveNameLeft();
 }

The button action routines are then simply
 private void addName()
 {
 if (txt.getText().length() > 0)
 {
 leftList.add(txt.getText());
 txt.setText("");
 }
 }
 //--
 private void moveNameRight()
 {
 String sel[] = leftList.getSelectedItems();
 if (sel != null)
 {
 rightList.add(sel[0]);
 leftList.remove(sel[0]);
 }
 }
 //--
 public void moveNameLeft()
 {
 String sel[] = rightList.getSelectedItems();
 if (sel != null)
 {
 leftList.add(sel[0]);
 rightList.remove(sel[0]);
 }
 }

This program is called TwoList.java on your CD-ROM.

83

Using the JFC JList Class
This is all quite straightforward, but suppose you would like to

rewrite the program using the Java Foundation Classes (JFC or “Swing”).
Most of the methods you use for creating and manipulating the user interface
remain the same. However, the JFC JList class is markedly different than the
AWT List class. In fact, because the JList class was designed to represent far
more complex kinds of lists, there are virtually no methods in common
between the classes:

awt List class JFC JList class

add(String); ---

remove(String) ---

String[] getSelectedItems() Object[] getSelectedValues()

Both classes have quite a number of other methods and almost none
of them are closely correlated. However, since we have already written the
program once, and make use of two different list boxes, writing an adapter to
make the JList class look like the List class seems a sensible solution to our
problem.

The JList class is a window container which has an array, vector or
other ListModel class associated with it. It is this ListModel that actually
contains and manipulates the data. Further, the JList class does not contain a
scroll bar, but instead relies on being inserted in the viewport of the
JScrollPane class. Data in the JList class and its associated ListModel are not
limited to strings, but may be almost any kind of objects, as long as you
provide the cell drawing routine for them. This makes it possible to have list
boxes with pictures illustrating each choice in the list.

 In our case, we are only going to create a class that emulates the List
class, and that in this simple case, needs only the three methods we showed in
the table above.

We can define the needed methods as an interface and then make sure
that the class we create implements those methods:
public interface awtList {
 public void add(String s);
 public void remove(String s);
 public String[] getSelectedItems()
}

84

Interfaces are important in Java, because Java does not allow multiple
inheritance as C++ does. Thus, by using the implements keyword, the class
can take on methods and the appearance of being a class of either type.

The Object Adapter
In the object adapter approach, we create a class that contains a JList

class but which implements the methods of the awtList interface above. This
is a pretty good choice here, because the outer container for a JList is not the
list element at all, but the JScrollPane that encloses it.

So, our basic JawtList class looks like this:
public class JawtList extends JScrollPane
 implements awtList
{
 private JList listWindow;
 private JListData listContents;
//---
 public JawtList(int rows) {
 listContents = new JListData();
 listWindow = new JList(listContents);

getViewport().add(listWindow);

 }
//---
 public void add(String s) {
 listContents.addElement(s);
 }
//---
 public void remove(String s) {
 listContents.removeElement(s);
 }
//---
 public String[] getSelectedItems() {
 Object[] obj = listWindow.getSelectedValues();
 String[] s = new String[obj.length];
 for (int i =0; i<obj.length; i++)
 s[i] = obj[i].toString();
 return s;
 }
}

Note, however, that the actual data handling takes place in the
JlistData class. This class is derived from the AbstractListModel, which
defines the following methods:

addListDataListener(l) Add a listener for changes in the
data.

85

removeListDataListener(l) Remove a listener

fireContentsChanged(obj, min,max) Call this after any change occurs
between the two indexes min and
max

fireIntervalAdded(obj,min,max) Call this after any data has been
added between min and max.

fireIntervalRemoved(obj, min, max) Call this after any data has been
removed between min and max.

The three fire methods are the communication path between the data
stored in the ListModel and the actual displayed list data. Firing them causes
the displayed list to be updated.

In this case, the addElement, removeElement methods are all that are
needed, although you could imagine a number of other useful methods. Each
time we add data to the data vector, we call the fireIntervalAdded method to
tell the list display to refresh that area of the displayed list.
class JListData extends AbstractListModel
{
 private Vector data;
//---
 public JListData() {
 data = new Vector();
 }
//---
 public void addElement(String s)
 {
 data.addElement(s);
 fireIntervalAdded(this, data.size()-1,

data.size());
 }
//---
 public void removeElement(String s) {
 data.removeElement(s);
 fireIntervalRemoved(this, 0, data.size());
 }
}

The Class Adapter
In Java, the class adapter approach isn’t all that different. If we create

a class JawtClassList that is derived from JList, then we have to create a
JScrollPane in our main program’s constructor:

86

leftList = new JclassAwtList(15);
 JScrollPane lsp = new JScrollPane();
 pLeft.add("Center", lsp);
 lsp.getViewport().add(leftList);

and so forth.

The class-based adapter is much the same, except that some of the
methods now refer to the enclosing class instead of an encapsulated class:
public class JclassAwtList extends JList
 implements awtList
{
 private JListData listContents;
//---
 public JclassAwtList(int rows)
 {
 listContents = new JListData();
 setModel(listContents);
 setPrototypeCellValue("Abcdefg Hijkmnop");
 }

There are some differences between the List and the adapted JList
class that are not so easy to adapt, however. The List class constructor allows
you to specify the length of the list in lines. There is no way to specify this
directly in the JList class. You can compute the preferred size of the
enclosing JScrollPane class based on the font size of the JList, but depending
on the layout manager, this may not be honored exactly.

You will find the example class JawtClassList, called by
JTwoClassList on your example CD-ROM.

There are also some differences between the class and the object
adapter approaches, although they are less significant than in C++.

• The Class adapter

• Won’t work when we want to adapt a class and all of its
subclasses, since you define the class it derives from when you
create it.

• Lets the adapter change some of the adapted class’s methods but
still allows the others to be used unchanged.

• An Object adapter

• Could allow subclasses to be adapted by simply passing them in
as part of a constructor.

87

• Requires that you specifically bring any of the adapted object’s
methods to the surface that you wish to make available.

Two Way Adapters
The two-way adapter is a clever concept that allows an object to be

viewed by different classes as being either of type awtList or a type JList.
This is most easily carried out using a class adapter, since all of the methods
of the base class are automatically available to the derived class. However,
this can only work if you do not override any of the base class’s methods with
ones that behave differently. As it happens, our JawtClassList class is an ideal
two-way adapter, because the two classes have no methods in common. You
can refer to the awtList methods or to the JList methods equally conveniently.

Pluggable Adapters
A pluggable adapter is one that adapts dynamically to one of several

classes. Of course, the adapter can only adapt to classes it can recognize, and
usually the adapter decides which class it is adapting based on differing
constructors or setParameter methods.

Java has yet another way for adapters to recognize which of several
classes it must adapt to: reflection. You can use reflection to discover the
names of public methods and their parameters for any class. For example, for
any arbitrary object you can use the getClass() method to obtain its class and
the getMethods() method to obtain an array of the method names.
JList list = new JList();
 Method[] methods = list.getClass().getMethods();

//print out methods
 for (int i = 0; i < methods.length; i++) {
 System.out.println(methods[i].getName());

 //print out parameter types
 Class cl[] = methods[i].getParameterTypes();
 for(int j=0; j < cl.length; j++)
 System.out.println(cl[j].toString());
 }

A “method dump” like the one produced by the code shown above
can generate a very large list of methods, and it is easier if you know the
name of the method you are looking for and simply want to find out which
arguments that method requires. From that method signature, you can then
deduce the adapting you need to carry out.

88

However, since Java is a strongly typed language, it is more likely
that you would simply invoke the adapter using one of several constructors,
where each constructor is tailored for a specific class that needs adapting.

Adapters in Java
In a broad sense, there are already a number of adapters built into the

Java language. In this case, the Java adapters serve to simplify an
unnecessarily complicated event interface. One of the most commonly used
of these Java adapters is the WindowAdapter class.

One of the inconveniences of Java is that windows do not close
automatically when you click on the Close button or window Exit menu item.
The general solution to this problem is to have your main Frame window
implement the WindowListener interface, leaving all of the Window events
empty except for windowClosing.
public void mainFrame extends Frame

implements WindowListener
{

public void mainFrame() {
addWindowListener(this); //frame listens

//for window events
}

 public void windowClosing(WindowEvent wEvt) {
 System.exit(0); //exit on System exit box clicked
 }
 public void windowClosed(WindowEvent wEvt){}
 public void windowOpened(WindowEvent wEvt){}
 public void windowIconified(WindowEvent wEvt){}
 public void windowDeiconified(WindowEvent wEvt){}
 public void windowActivated(WindowEvent wEvt){}
 public void windowDeactivated(WindowEvent wEvt){}
}
As you can see, this is awkward and hard to read. The WindowAdapter class
is provided to simplify this procedure. This class contains empty
implementations of all seven of the above WindowEvents. You need then
only override the windowClosing event and insert the appropriate exit code.

One such simple program is shown below:
//illustrates using the WindowAdapter class
public class Closer extends Frame {
 public Closer() {
 WindAp windap = new WindAp();
 addWindowListener(windap);
 setSize(new Dimension(100,100));

89

 setVisible(true);
 }
 static public void main(String argv[]) {
 new Closer();
 }
}
//make an extended window adapter which
//closes the frame when the closing event is received
class WindAp extends WindowAdapter {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
}

You can, however, make a much more compact, but less readable version of
the same code by using an anonymous inner class:
//create window listener for window close click
 addWindowListener(new WindowAdapter()
 {

 public void windowClosing(WindowEvent e)
{System.exit(0);}

 });
Adapters like these are common in Java when a simple class can be used to
encapsulate a number of events. They include ComponentAdapter,
ContainerAdapter, FocusAdapter, KeyAdapter, MouseAdapter, and
MouseMotionAdapter.

129

Behavioral Patterns
Behavioral patterns are those patterns that are most specifically

concerned with communication between objects. In this chapter, we’ll see
that:

• The Observer pattern defines the way a number of classes can be notified
of a change,

• The Mediator defines how communication between classes can be
simplified by using another class to keep all classes from having to know
about each other.

• The Chain of Responsibility allows an even further decoupling between
classes, by passing a request between classes until it is recognized.

• The Template pattern provides an abstract definition of an algorithm, and

• The Interpreter provides a definition of how to include language elements
in a program.

• The Strategy pattern encapsulates an algorithm inside a class,

• The Visitor pattern adds function to a class,

• The State pattern provides a memory for a class’s instance variables.

• The Command pattern provides a simple way to separate execution of a
command from the interface environment that produced it, and

• The Iterator pattern formalizes the way we move through a list of data
within a class.

130

CHAIN OF RESPONSIBILITY
The Chain of Responsibility pattern allows a number of classes to

attempt to handle a request, without any of them knowing about the
capabilities of the other classes. It provides a loose coupling between these
classes; the only common link is the request that is passed between them. The
request is passed along until one of the classes can handle it.

One example of such a chain pattern is a Help system, where every
screen region of an application invites you to seek help, but in which there are
window background areas where more generic help is the only suitable result.
When you select an area for help, that visual control forwards its ID or name
to the chain. Suppose you selected the “New” button. If the first module can
handle the New button, it displays the help message. If not, it forwards the
request to the next module. Eventually, the message is forwarded to an “All
buttons” class that can display a general message about how buttons work. If
there is no general button help, the message is forwarded to the general help
module that tells you how the system works in general. If that doesn’t exist,
the message is lost and no information is displayed. This is illustrated below.

File button All buttons

All controls General help

New button

There are two significant points we can observe from this example;
first, the chain is organized from most specific to most general, and that there
is no guarantee that the request will produce a response in all cases.

Applicability
We use the Chain of Responsibility when

• You have more than one handler that can handle a request and
there is no way to know which handler to use. The handler must
be determined automatically by the chain.

131

• You want to issue a request to one of several objects without
specifying which one explicitly.

• You want to be able to modify the set of objects dynamically that
can handle requests.

Sample Code
Let’s consider a simple system for display the results of typed in

requests. These requests can be

• Image filenames

• General filenames

• Colors

• Other commands

In three cases, we can display a concrete result of the request, and in
the last case, we can only display the request text itself.

In the above example system, we type in “Mandrill” and see a display
of the image Mandrill.jpg. Then, we type in “FileList” and that filename is
highlighted in the center list box. Next, we type in “blue” and that color is
displayed in the lower center panel. Finally, if we type in anything that is

132

neither a filename nor a color, that text is displayed in the final, right-hand list
box. This is shown below:

Image
file

Color
name

File
name General Command

To write this simple chain of responsibility program, we start with an
abstract Chain class:
public interface Chain
{
public abstract void addChain(Chain c);
public abstract void sendToChain(String mesg);
public Chain getChain();
}

The addChain method adds another class to the chain of classes. The
getChain method returns the current class to which messages are being
forwarded. These two methods allow us to modify the chain dynamically and
add additional classes in the middle of an existing chain. The sendToChain
method forwards a message to the next object in the chain.

Our Imager class is thus derived from JPanel and implements our
Chain interface. It takes the message and looks for “.jpg” files with that root
name. If it finds one, it displays it.
public class Imager extends JPanel

implements Chain
{
 private Chain nextChain;
 private Image img;
 private boolean loaded;

public void addChain(Chain c) {
 nextChain = c; //next in chain of resp
}
//--
public void sendToChain(String mesg)
{
 //if there is a JPEG file with this root name
 //load it and display it.
 if (findImage(mesg))
 loadImage(mesg + ".jpg");
 else
 //Otherwise, pass request along chain
 nextChain.sendToChain(mesg);

133

}
//--
public Chain getChain() {
 return nextChain;
}
//--
public void paint(Graphics g) {
 if (loaded) {
 g.drawImage(img, 0, 0, this);
 }
}

In a similar fashion, the ColorImage class simply interprets the
message as a color name and displays it if it can. This example only interprets
3 colors, but you could implement any number:
public void sendToChain(String mesg) {
 Color c = getColor(mesg);
 if(c != null) {
 setBackground(c);
 repaint();
 }
 else {
 if (nextChain != null)
 nextChain.sendToChain(mesg);
 }
}
//-----------------------------------
private Color getColor(String mesg) {
 String lmesg = mesg.toLowerCase();
 Color c = null;

 if(lmesg.equals("red"))
 c = Color.red;
 if(lmesg.equals("blue"))
 c = Color.blue;
 if(lmesg.equals("green"))
 c= Color.green;
 return c;
}

The List Boxes
Both the file list and the list of unrecognized commands are JList

boxes. Since we developed an adapter JawtList in the previous chapter to give
JList a simpler interface, we’ll use that adapter here. The RestList class is the
end of the chain, and any command that reaches it is simply displayed in the
list. However, to allow for convenient extension, we are able to forward the
message to other classes as well.

134

public class RestList extends JawtList
 implements Chain
{
private Chain nextChain = null;
//--------------------------------------
 public RestList() {
 super(10); //arg to JawtList
 setBorder(new LineBorder(Color.black));
 }
 //--------------------------------------
 public void addChain(Chain c) {
 nextChain = c;
 }
 //--------------------------------------
 public void sendToChain(String mesg) {
 add(mesg); //this is the end of the chain
 repaint();
 if(nextChain != null)
 nextChain.sendToChain(mesg);
 }
 //--------------------------------------
 public Chain getChain() {
 return nextChain;
 }
}

The FileList class is quite similar and can be derived from the
RestList class, to avoid replicating the addChain and getChain methods. The
only differences are that it loads a list of the files in the current directory into
the list when initialized, and looks for one of those files when it receives a
request.
public class FileList extends RestList
{
 String files[];
 private Chain nextChain;
//---
 public FileList()
 {
 super();
 File dir = new File(System.getProperty("user.dir"));
 files = dir.list();
 for(int i = 0; i<files.length; i++)
 add(files[i]);
 }
//---------------------------------------
public void sendToChain(String mesg)
 {
 boolean found = false;
 int i = 0;

135

 while ((! found) && (i < files.length)) {
 XFile xfile = new XFile(files[i]);
 found = xfile.matchRoot(mesg);
 if (! found) i++;
 }
 if(found) {
 setSelectedIndex(i);
 }
 else {
 if(nextChain != null)
 nextChain.sendToChain(mesg);
 }
 }

The Xfile class we introduce above is a simple child of the File class
that contains a matchRoot method to compare a string to the root name of a
file.

Finally, we link these classes together in the constructor to form the
Chain:
//set up the chain of responsibility
 sender.addChain(imager);
 imager.addChain(colorImage);
 colorImage.addChain(fileList);
 fileList.addChain(restList);

This program is called Chainer.java on your CD-ROM.

A Chain or a Tree?
Of course, a Chain of Responsibility does not have to be linear. The

Smalltalk Companion suggests that it is more generally a tree structure with a
number of specific entry points all pointing upward to the most general node.

136

General
help

Window
help

Button help Menu help List box
help

File NewOK Quit Files Colors

However, this sort of structure seems to imply that each button, or is
handler, knows where to enter the chain. This can complicate the design in
some cases, and may preclude the need for the chain at all.

Another way of handling a tree-like structure is to have a single entry
point that branches to the specific button, menu or other widget types, and
then “un-branches” as above to more general help cases. There is little reason
for that complexity -- you could align the classes into a single chain, starting
at the bottom, and going left to right and up a row at a time until the entire
system had been traversed, as shown below:

137

General
help

Window
help

Button help Menu help List box
help

File NewOK Quit Files Colors

Kinds of Requests
The request or message passed along the Chain of Responsibility may

well be a great deal more complicated than just the string that we
conveniently used on this example. The information could include various
data types or a complete object with a number of methods. Since various
classes along the chain may use different properties of such a request object,
you might end up designing an abstract Request type and any number of
derived classes with additional methods.

Examples in Java
The most obvious example of the Chain of Responsibility is the class

inheritance structure itself. If you call for a method to be executed in a deeply
derived class, that method is passed up the inheritance chain until the first
parent class containing that method is found. The fact that further parents
contain other implementations of that method does not come into play.

138

Consequences of the Chain of Responsibility
1. The main purpose for this pattern, like a number of others, is to reduce

coupling between objects. An object only needs to know how to forward
the request to other objects.

2. This approach also gives you added flexibility in distributing
responsibilities between objects. Any object can satisfy some or all of the
requests, and you can change both the chain and the responsibilities at run
time.

3. An advantage is that there may not be any object that can handle the
request, however, the last object in the chain may simply discard any
requests it can’t handle.

4. Finally, since Java can not provide multiple inheritance, the basic Chain
class needs to be an interface rather than an abstract class, so that the
individual objects can inherit from another useful hierarchy, as we did
here by deriving them all from JPanel. This disadvantage of this approach
is that you often have to implement the linking, sending and forwarding
code in each module separately.

