\ (= . E - How do you want
) | SAUE @ Ll L= eUALL to be, and when?
L an Anla Softare Development Resaures Let Ren Jeffries, experienced
\ [din Agile Sofiwdre Uevelopment Resource M*)w) {rajncr, prach'éianﬂ,
\\ ccach, help your' Aqile team
kY Lt the next Level! Bri
i 23:1 preject in on time, on
71%, it for purpese!
search Xprogramming » What is Extreme Programming? Ron's bocks ¢ publications
COLLECTED TOPICS: Kate Oneal | Adventures in C# | Documentation in
RSS Feed XP | Book Reviews =
Sections: What is Extreme Programming?
weleome
Wha'{ iS YP? . . o Adventures in C¥
Articles Extreme Programming is a discipline of software
’ development based on values of simplicity,
Software communication, feedback, and courage. It works .
. . . Extreme Programming
Commumz‘_t.f by bringing the whole team together in the Adventures in C#
Archives presence of simple practices, with enough Ron Jeffries
feedback to enable thfz team to see u{here Fhey are Calendar
and to tune the practices to their unique situation. E—
Tk MaxaGer Poor 2007 outlook:
AR Plshing on
o The Nature of
—— Software
[ek | 1 Deve/opmen{
:* . 2007 'Trafninj
e -——- In Extreme Programming, every
contributor to the project is an integral part of the “Whole Certified Serum Plus’
The Manager Pool Team*“. The team forms around a business representative Learn how to 9311_
Don Sherwood Olson called “the Customer”, who sits with the team and works with 'Thinjs done/

and Carol L.Stimmel

Ruby in a Nutshell
Yukihiro Matsumoto

them daily.

e Core Practices: Whole Team

Extreme Programming teams use a simple form of planning

and tracking to decide what should be done next and to predict

when the project will be done. Focused on business value, the

team produces the software in a series of small fully-integrated

releases that pass all the tests the Customer has defined.

e Core Practices: Planning Game, Small Releases,
Customer Tests

Extreme Programmers work together in pairs and as a groun.

2007 Condferences:
Serum Cs-a{herinj

Agile 2007
Sl’n’flzp/e Desijn
. stay tuned

http://xprogramming.com/
http://www.xprogramming.com/xpmag/services.htm
http://www.xprogramming.com/
http://www.xprogramming.com/kate-oneal
http://www.xprogramming.com/acsindex
http://www.xprogramming.com/docindex
http://www.xprogramming.com/bookindex
http://xprogramming.com/xpmag/whatisxp/
http://www.xprogramming.com/images/circles.jpg
http://www.xprogramming.com/xpmag/whatisxp.htm#whole
http://www.xprogramming.com/xpmag/whatisxp.htm#whole
http://www.xprogramming.com/xpmag/whatisxp.htm#planning
http://www.xprogramming.com/xpmag/whatisxp.htm#small
http://www.xprogramming.com/xpmag/whatisxp.htm#customer
http://www.xprogramming.com/feed
http://www.xprogramming.com/welcome
http://www.xprogramming.com/xpmag/whatisxp
http://www.xprogramming.com/xpmag
http://www.xprogramming.com/software
http://www.xprogramming.com/xp_links
http://www.xprogramming.com/archives
http://www.xprogramming.com/xpmag/books20020118.htm#book0201725835
http://www.xprogramming.com/xpmag/books20020203ruby.htm#book0596002149
http://www.xprogramming.com/xpmag/books20020118.htm#book0201725835
http://www.xprogramming.com/xpmag/books20020203ruby.htm#book0596002149
http://www.xprogramming.com/xpmag/Books20040324.htm#book0735619492
http://www.xprogramming.com/xpmag/services
http://www.xprogramming.com/xpmag/services
http://www.xprogramming.com/xpmag/services
http://www.xprogramming.com/xpmag/Books20040324.htm#book0735619492

amazonconm

p— e you're done

Lean Software
Development

Mary Poppendieck, ...
New $46.15

Best $22.15

Agile Testing
Lisa Crispin, Jane...

User Stories Applied
Mike Cohn

Aqile Principles
Patterns, and Prac...
Robert C. Martin, ...

Clean Code
Robert C. Martin

Privacy Information

with simple design and obsessively tested code, improving th
design continually to keep it always just right for the current
needs.

e Core Practices: Simple Design, Pair Programming,
Test-Driven Development, Design Improvement

The Extreme Programming team keeps the system integrated
and running all the time. The programmers write all
production code in pairs, and all work together all the time.
They code in a consistent style so that everyone can
understand and improve all the code as needed.

e Core Practices: Continuous Integration, Collective
Code Ownership, Coding Standard

The Extreme Programming team shares a common and simple
picture of what the system looks like. Everyone works at a pace
that can be sustained indefinitely.

e Core Practices: Metaphor, Sustainable Pace

Core Practices

All the contributors to an XP project sit together, members of
one team. This team must include a business representative —
the “Customer” — who provides the requirements, sets the
priorities, and steers the project. It’s best if the Customer or
one of her aides is a real end user who knows the domain and
what is needed. The team will of course have programmers.
The team may include testers, who help the Customer define
the customer acceptance tests. Analysts may serve as helpers to
the Customer, helping to define the requirements. There is
commonly a coach, who helps the team keep on track, and
facilitates the process. There may be a manager, providing
resources, handling external communication, coordinating
activities. None of these roles is necessarily the exclusive
property of just one individual: Everyone on an XP team
contributes in any way that they can. The best teams have no
specialists, only general contributors with special skills.

XP planning addresses two key questions in software
development: predicting what will be accomplished by the due
date, and determining what to do next. The emphasis is on
steering the project — which is quite straightforward — rather
than on exact prediction of what will be needed and how long it
will take — which is quite difficult. There are two key planning
steps in XP, addressing these two questions:

Release Planning is a practice where the Customer presents
the desired features to the programmers, and the programmers
estimate their difficulty. With the cost estimates in hand, and
with knowledge of the importance of the features, the
Customer lays out a plan for the project. Initial release plans
are necessarily imprecise: neither the priorities nor the
estimates are truly solid, and until the team begins to work, we
won’t know just how fast they will go. Even the first release
plan is accurate enough for decision making, however, and XP
teams revise the release plan regularly.

Iteration Planning is the practice whereby the team is given
direction every couple of weeks. XP teams build software in
two-week “iterations”, delivering running useful software at the

http://www.xprogramming.com/xpmag/whatisxp.htm#simple
http://www.xprogramming.com/xpmag/whatisxp.htm#pair
http://www.xprogramming.com/xpmag/whatisxp.htm#test
http://www.xprogramming.com/xpmag/whatisxp.htm#design
http://www.xprogramming.com/xpmag/whatisxp.htm#continuous
http://www.xprogramming.com/xpmag/whatisxp.htm#collective
http://www.xprogramming.com/xpmag/whatisxp.htm#coding
http://www.xprogramming.com/xpmag/whatisxp.htm#metaphor
http://www.xprogramming.com/xpmag/whatisxp.htm#sustainable
http://www.amazon.com/?&tag=armaties&camp=15309&creative=331453&linkCode=st1&adid=084BKR3VDS6WWYP0P6QB
http://www.amazon.com/dp/0321150783?tag=armaties&camp=15309&creative=331453&linkCode=st1&creativeASIN=0321150783&adid=084BKR3VDS6WWYP0P6QB
http://www.amazon.com/dp/0321534468?tag=armaties&camp=15309&creative=331453&linkCode=st1&creativeASIN=0321534468&adid=084BKR3VDS6WWYP0P6QB
http://www.amazon.com/dp/0321205685?tag=armaties&camp=15309&creative=331453&linkCode=st1&creativeASIN=0321205685&adid=084BKR3VDS6WWYP0P6QB
http://www.amazon.com/dp/0131857258?tag=armaties&camp=15309&creative=331453&linkCode=st1&creativeASIN=0131857258&adid=084BKR3VDS6WWYP0P6QB
http://www.amazon.com/dp/0132350882?tag=armaties&camp=15309&creative=331453&linkCode=st1&creativeASIN=0132350882&adid=084BKR3VDS6WWYP0P6QB
http://rcm.amazon.com/e/cm/privacy-policy.html?o=1

end of each iteration. During Iteration Planning, the Customer
presents the features desired for the next two weeks. The
programmers break them down into tasks, and estimate their
cost (at a finer level of detail than in Release Planning). Based
on the amount of work accomplished in the previous iteration,
the team signs up for what will be undertaken in the current
iteration.

These planning steps are very simple, yet they provide very
good information and excellent steering control in the hands of
the Customer. Every couple of weeks, the amount of progress
is entirely visible. There is no “ninety percent done” in XP: a
feature story was completed, or it was not. This focus on
visibility results in a nice little paradox: on the one hand, with
so much visibility, the Customer is in a position to cancel the
project if progress is not sufficient. On the other hand,
progress is so visible, and the ability to decide what will be
done next is so complete, that XP projects tend to deliver more
of what is needed, with less pressure and stress.

As part of presenting each desired feature, the XP Customer
defines one or more automated acceptance tests to show that
the feature is working. The team builds these tests and uses
them to prove to themselves, and to the customer, that the
feature is implemented correctly. Automation is important
because in the press of time, manual tests are skipped. That’s
like turning off your lights when the night gets darkest.

The best XP teams treat their customer tests the same way they
do programmer tests: once the test runs, the team keeps it
running correctly thereafter. This means that the system only
improves, always notching forward, never backsliding.

XP teams practice small releases in two important ways:

First, the team releases running, tested software, delivering
business value chosen by the Customer, every iteration. The
Customer can use this software for any purpose, whether
evaluation or even release to end users (highly recommended).
The most important aspect is that the software is visible, and
given to the customer, at the end of every iteration. This keeps
everything open and tangible.

Second, XP teams release to their end users frequently as well.
XP Web projects release as often as daily, in house projects
monthly or more frequently. Even shrink-wrapped products
are shipped as often as quarterly.

It may seem impossible to create good versions this often, but
XP teams all over are doing it all the time. See Continuous
Integration for more on this, and note that these frequent
releases are kept reliable by XP’s obsession with testing, as
described here in Customer Tests and Test-Driven

Development.

XP teams build software to a simple design. They start simple,
and through programmer testing and design
improvement, they keep it that way. An XP team keeps the
design exactly suited for the current functionality of the system.
There is no wasted motion, and the software is always ready
for what’s next.

Design in XP is not a one-time thing, or an up-front thing, it is
an all-the-time thing. There are design steps in release
planning and iteration planning, plus teams engage in quick
design sessions and design revisions through refactoring,
through the course of the entire project. In an incremental,

http://www.xprogramming.com/xpmag/whatisxp.htm#test
http://www.xprogramming.com/xpmag/whatisxp.htm#continuous
http://www.xprogramming.com/xpmag/whatisxp.htm#customer
http://www.xprogramming.com/xpmag/whatisxp.htm#test
http://www.xprogramming.com/xpmag/whatisxp.htm#test
http://www.xprogramming.com/xpmag/whatisxp.htm#design

iterative process like Extreme Programming, good design is
essential. That’s why there is so much focus on design
throughout the course of the entire development.

All production software in XP is built by two programmers,
sitting side by side, at the same machine. This practice ensures
that all production code is reviewed by at least one other
programmer, and results in better design, better testing, and
better code.

It may seem inefficient to have two programmers doing “one
programmer’s job”, but the reverse is true. Research into
pair programming shows that pairing produces better code
in about the same time as programmers working singly. That’s
right: two heads really are better than one!

Some programmers object to pair programming without ever
trying it. It does take some practice to do well, and you need to
do it well for a few weeks to see the results. Ninety percent of
programmers who learn pair programming prefer it, so we
highly recommend it to all teams.

Pairing, in addition to providing better code and tests, also
serves to communicate knowledge throughout the team. As
pairs switch, everyone gets the benefits of everyone’s
specialized knowledge. Programmers learn, their skills
improve, they become more valuable to the team and to the
company. Pairing, even on its own outside of XP, is a big win
for everyone.

Extreme Programming is obsessed with feedback, and in
software development, good feedback requires good testing.
Top XP teams practice “test-driven development”, working in
very short cycles of adding a test, then making it work. Almost
effortlessly, teams produce code with nearly 100 percent test
coverage, which is a great step forward in most shops. (If your
programmers are already doing even more sophisticated
testing, more power to you. Keep it up, it can only help!)

It isn’t enough to write tests: you have to run them. Here, too,
Extreme Programming is extreme. These “programmer tests”,
or “unit tests” are all collected together, and every time any
programmer releases any code to the repository (and pairs
typically release twice a day or more), every single one of the
programmer tests must run correctly. One hundred percent,
all the time! This means that programmers get immediate
feedback on how they’re doing. Additionally, these tests
provide invaluable support as the software design is improved.

Extreme Programming focuses on delivering business value in
every iteration. To accomplish this over the course of the whole
project, the software must be well-designed. The alternative
would be to slow down and ultimately get stuck. So XP uses a
process of continuous design improvement called Refactoring,
from the title of Martin Fowler’s book, “Refactoring:

Improving the Design of Existing Code*.

The refactoring process focuses on removal of duplication (a
sure sign of poor design), and on increasing the “cohesion” of
the code, while lowering the “coupling”. High cohesion and low
coupling have been recognized as the hallmarks of well-
designed code for at least thirty years. The result is that XP
teams start with a good, simple design, and always have a
good, simple design for the software. This lets them sustain
their development speed, and in fact generally increase speed
as the project goes forward.

http://www.pairprogramming.com/
http://www.amazon.com/exec/obidos/ASIN/0201485672/armaties

Refactoring is, of course, strongly supported by comprehensive
testing to be sure that as the design evolves, nothing is broken.
Thus the customer tests and programmer tests are a
critical enabling factor. The XP practices support each other:
they are stronger together than separately.

Extreme Programming teams keep the system fully integrated
at all times. We say that daily builds are for wimps: XP teams
build multiple times per day. (One XP team of forty people
builds at least eight or ten times per day!)

The benefit of this practice can be seen by thinking back on
projects you may have heard about (or even been a part of)
where the build process was weekly or less frequently, and
usually led to “integration hell”, where everything broke and no
one knew why.

Infrequent integration leads to serious problems on a software
project. First of all, although integration is critical to shipping
good working code, the team is not practiced at it, and often it
is delegated to people who are not familiar with the whole
system. Second, infrequently integrated code is often — I would
say usually — buggy code. Problems creep in at integration
time that are not detected by any of the testing that takes place
on an unintegrated system. Third, weak integration process
leads to long code freezes. Code freezes mean that you have
long time periods when the programmers could be working on
important shippable features, but that those features must be
held back. This weakens your position in the market, or with
your end users.

On an Extreme Programming project, any pair of programmers
can improve any code at any time. This means that all code gets
the benefit of many people’s attention, which increases code
quality and reduces defects. There is another important benefit
as well: when code is owned by individuals, required features
are often put in the wrong place, as one programmer discovers
that he needs a feature somewhere in code that he does not
own. The owner is too busy to do it, so the programmer puts
the feature in his own code, where it does not belong. This
leads to ugly, hard-to-maintain code, full of duplication and
with low (bad) cohesion.

Collective ownership could be a problem if people worked
blindly on code they did not understand. XP avoids these
problems through two key techniques: the programmer
tests catch mistakes, and pair programming means that the
best way to work on unfamiliar code is to pair with the expert.
In addition to ensuring good modifications when needed, this
practice spreads knowledge throughout the team.

XP teams follow a common coding standard, so that all the
code in the system looks as if it was written by a single — very
competent — individual. The specifics of the standard are not
important: what is important is that all the code looks familiar,
in support of collective ownership.

Extreme Programming teams develop a common vision of how
the program works, which we call the “metaphor”. At its best,
the metaphor is a simple evocative description of how the
program works, such as “this program works like a hive of
bees, going out for pollen and bringing it back to the hive” as a
description for an agent-based information retrieval system.

Sometimes a sufficiently poetic metaphor does not arise. In
any case, with or without vivid imagery, XP teams use a
common system of names to be sure that everyone

http://www.xprogramming.com/xpmag/whatisxp.htm#customer
http://www.xprogramming.com/xpmag/whatisxp.htm#test
http://www.xprogramming.com/xpmag/whatisxp.htm#test
http://www.xprogramming.com/xpmag/whatisxp.htm#pair

understands how the system works and where to look to find
the functionality you're looking for, or to find the right place to
put the functionality you're about to add.

Extreme Programming teams are in it for the long term. They
work hard, and at a pace that can be sustained indefinitely.
This means that they work overtime when it is effective, and
that they normally work in such a way as to maximize
productivity week in and week out. It’s pretty well understood
these days that death march projects are neither productive
nor produce quality software. XP teams are in it to win, not to
die.

Conclusion

Extreme Programming is a discipline of software development
based on values of simplicity, communication, feedback, and
courage. It works by bringing the whole team together in the
presence of simple practices, with enough feedback to enable
the team to see where they are and to tune the practices to their
unique situation.

Picture

XP Prachees -

Here’s a picture showing the practices and the main “cycles”
of XP.

http://www.xprogramming.com/images/circles.jpg
http://www.xprogramming.com/images/circles.jpg

