cisc3650, spring 2012, lab IV.1 / prof sklar
Android Graphics, part 1

overview

This lab consists of several exercises that will comprise part of the homework assignment for Unit V.
Refer to the “OpenGL ES 1.0" Tutorial, below:

http://developer.android.com/resources/tutorials/opengl/opengl-es10.html

exercises
Each of the following exercises is based on portions of the “OpenGL ES 1.0" Tutorial (URL above), as indicated.

1. Create an Activity with GLSurfaceView
Work through the “Create an Activity with GLSurfaceView" portion of the Tutorial.
When you run the example, you'll just see a grey background in the Android emulator.

Modify the example as follows:
e Change the background color.
e Add a message to display in the LogCat window of Eclipse, using the Log.d () function, like this:
public void onCreate(Bundle savedInstanceState) {
Log.d("HelloOpenGLES10", "in onCreate()");

}
which is in the HelloOpenGLES10.java file. The Log.d() function takes two arguments. The first
argument is a string that appears in the “Tag” column of the LogCat window. The second argument
is a string that appears in the “Text” column of the LogCat window. This is a useful way to display
debugging messages while your code runs.
Note that you have to import the Log package in order to use this function:

import android.util.Log;

2. Draw a Shape on GLSurfaceView

Continue with the Tutorial, working through the “Draw a Shape on GLSurfaceView, Draw the Triangle”
section.

Modify the example as follows:
e Change the color of the triangle.
e Change the size of the triangle.
e Change the position of the triangle.

3. Apply Projection and Camera View
Continue with the Tutorial, working through the “Apply Projection and Camera View" section.

This function call:

GLU.gluLookAt(gl, 0, O, -5, 0f, O0f, Of, 0f, 1.0f, 0.0f);

sets the position of the camera and its viewpoint.

The function is defined as follows:

public static void gluLookAt (GL10 gl,
float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ,
float upX, float upY, float upZ)

where:

e gl : a GL10 interface

e eyeX, eyeY, eyeZ: the (z,y, z) position of the camera

e centerX, centerY, centerZ : the (z,y,z) position that the camera is looking at (i.e., where the

camera is pointing)

e upX, upY, upZ: (z,y, 2) vector that defines “up” in the viewpoint
To better understand how this works, try modifying the eye vector to (0,0, —7) instead of (0,0,—5). This
is like moving the camera away from the point it is looking at. The triangle should get smaller.

Then try modifying the eye vector to increase the z value, such as (0,0, —3), which will be like moving
closer to the point the camera is looking at. The triangle should get bigger.

Try changing other values in the eye, center and up vectors, and see what happens to the triangle.

. Add Motion
Continue with the Tutorial, working through the “"Add Motion” section.

The example adjusts the rotation angle for drawing by multiplying the current drawing matrix by the rotation
matrix specified in the function parameters, as follows:

gl.glRotatef (angle, 0.0f, 0.0f, 1.0f);

After you try this example, try changing the parameters in this function call, for example using the rotation
matrix (angle, 1,0,0) and see how this changes the axis of rotation.

You can also change the position of the triangle by using the translation matrix. The function call is:
gl.glTranslatef(x, y, z);

Try changing one value, such as the x value of the translation matrix each time the onDrawFrame ()
function is called. For example, create a class variable called xt (of type float) and initialize it to 0.0f in
the +onSurfaceCreated() function. Then, in the onDrawFrame () function, call glTranslatef () using
the translation matrix (xt,0,0). After calling glTranslatef (), increment the value of zt by 0.1f, so that
next time the onDrawFrame () function is called, the value of the translation matrix will be slightly different.
The triangle should gradually move to the left (or right, up, down—depending on how you set your Camera
View parameters).

Note that the minimum and maximum values of the x coordinate (and y and z coordinates) are set in the
function call glFrustumf (), which sets the clipping planes:

gl.glFrustumf(-ratio, ratio, -1, 1, 3, 7);

The function arguments are the minimum and maximum values for the vertical, horizontal and depth clipping
planes, as in:

gl.glFrustumf (left, right, bottom, top, near, far);

So if you try the translation exercise above, make sure that your x value ranges between the le ft and right
parameters, and y ranges between bottom and top.

. Respond to Touch Events
Continue with the Tutorial, working through the "Respond to Touch Events” section.
This will let you rotate the triangle by dragging inside the drawing canvas on the Android emulator.

There are two aspects to this functionality. One is to create an event handler that responds to “touch”
events: onTouchEvent(). The other is to set the “rendering mode” so that the renderer (i.e., the
HelloOpenGLES10Renderer class), particularly the onDrawFrame () function is only called when rendering
needs to be done:

setRenderMode (GLSurfaceView.RENDERMODE_WHEN_DIRTY);

In this case, we only want to re-render the graphics when the user has touched and dragged on the view
surface.

Once you have this example working, try modifying the example so that the rotating triangle (or however
you left the moving triangle from the previous section) stops moving when you click (i.e., touch) inside the
view surface. This will involve two changes. First, you'll need to re-render the graphics continuously, so
that the animation happens—i.e., you won't need the above call to setRenderMode (). Second, inside the
onTouchEvent () function, you'll want to handle “click” events instead of "move” events. A “move” event
is handled inside this switch statement:

switch (e.getAction()) {
case MotionEvent.ACTION_MOVE:

}
Instead, you'll want to handle MotionEvent.ACTION_DOWN events, which occur when the user “clicks”

inside the view surface (or presses down with their finger on the touch screen).

Have a look at the Android reference documentation for the GLSurfaceView class to learn about different
types of touchscreen events that can be handled.

