
3/7/12

1

M O B I L E G A M E P R O G R A M M I N G
A N D T H E A N D R O I D P L A T F O R M

CISC 3650
 Human-Computer Interaction

guest lecturer:
Matthew K. Meyer
http://www.sci.brooklyn.cuny.edu/~meyer/

Content

1.  Your Project Portfolio
1.  Why make a mobile app?
2.  Why make an Android App?

2.  Mobile Programming
1.  Introduction
2.  How apps are implemented
3.  What's different about mobile apps
4.  Strengths and Limitations of the medium
5.  Making it work
6.  More information

3.  Android
1.  History
2.  Resources

Project Portfolio

Why make an mobile app?

  There are really only 3 interview questions:
1. Can you do the job?
2. Will you like it here?
3. Do we like you?

  For a programmer the first question actually has two parts:
1. Do you have the requisite knowledge to program:

1.  "Tell me about inheritance (polymorphism)."
2.  "What's the difference between an abstract class and an interface?"
3.  "What the most efficient sort for a list that has at most 1 or 2 items out of place?"

2. Can you complete a large project?
1.  "Show me what you have done before."
2.  "Do you have any examples of your work?"

  In an interview situation, being able to point to a large website, or
moderate sized application that you have created is very helpful.

  A complete (simple) mobile application is a great thing to have in
your portfolio.

3/7/12

2

Why make an Android app?

1.  It’s free to develop and deploy apps on Android
mobile devices!

2.  Android has a larger installed base than IOS
(almost twice the installed base in the US and
growing).

3.  Slightly easier learning curve for SDK (Java) than
for Objective-C

4.  Yes, you can make money doing it:
  http://www.electricpig.co.uk/2011/03/22/meet-the-

android-app-millionaires/

Introduction

Introduction I (Devices)

 Mobile Devices (Primary Purpose):
 Gaming Devices: Nintendo DS, PSP.
 Music Devices: ZUNE, IPod.
 Cellphone Devices: Nokia, Samsung
 Web Devices: Blackberry, IPhone, PDA’s

 Line between all of these devices is rapidly becoming
blurred.

 For our purposes “mobile device” is network enabled
device you can carry.

Introduction II (Technology)

 Modern mobile devices are small computers (simple
phones == 1990 computer; iPhone 4, 1Ghz
Processor, 512MB RAM).

 Signature feature of these devices is the built in
network support (complex protocol suite).

 Mobile devices (in particular “smart phones”)
driving force behind advances in wireless
communication technologies (4G = 1 Gbit/s).

 Fixed (and limited) hardware (RAM) as well as
limited input, output, and display capabilities.

3/7/12

3

Introduction III (Market)

 Mobile devices have an incredible installed base. [1]
 Over 5.6 billion mobile phones in USE on the planet.

 World Population of 7,012,000,000
 79.86 % of world has a mobile phone
 About 20% (about 1.2 billion) are "smart phones"
 NOTE: Smartphone ownership is over 43% for U.S. mobile

subscribers (Android most popular)
 Compare that too:

 Personal computers in the world 1-2 Billion (2 Billion by 2015).
 Xbox 360's in the world, 50-60 million.

[1] Philippines - Telecoms, Mobile, Broadband and Forecasts".
BuddeComm. 2011-10-12. Retrieved 2012-01-24.

Introduction IV (App Market)

 Worldwide Smartphone Application Market To
Reach US$15.65 Billion by 2013. [2]

 According to TechNet the "App Economy" has
created over 466,000 new jobs (up from 0 in 2007).

 According to CNET (2011) although the Apple Apps
Market are still more profitable (4 times more
profitable) the Android Market is now growing at a
rate of 1 billion app downloads per month and will
soon have far more App offerings.

[2] "Global Smartphone Application Market Report 2010", Ralf-Gordon
Jahns, et al. 2011
[3] CNET: http://news.cnet.com/8301-13579_3-57346115-37/iphone-
app-sales-kicking-app-on-android-market-says-study/

How "Apps are Implemented"

How Apps are Implemented I

 Embedded Apps:
 Built into chipset or OS.
 Ships with device, rarely added after.
 Example: Snake.

 SMS Apps:
 Piggy back on SMS system for functionality.
 Played by sending text messages to other phones and servers.
 Still very popular over-seas.

3/7/12

4

How Apps are Implemented II

 Compiled Apps / C Apps (C#, C++, Mobile-C,
Objective-C, Bionic)
 Written then compiled for specific system.
 Fast, powerful, optimized applications are possible that

directly access phone hardware.
 Different vendors create application development platforms

for developers to use; this allows them to have SOME control
over what gets put on their devices.

 Examples: BREW (Qualcomm), .NET (Microsoft), IPhone
SDK (IPhone), Mophun (Oberon, mult), Android NDK
(Android phones)

How Apps are Implemented III

 JAVA (and other Interpreted languages)
 Most mobile devices support JAVA.
  J2ME (Micro Edition) is a Java Virtual Machine (JVM)

specifically optimized for mobile devices.
 The JVM “Sandbox” makes it less important for platforms to

rigorously control access to the mobile device.
 Examples: Processing (FREE & Simple), MIDP (J2ME), ExEn,

WGE, DoJa, Android SDK.

How Apps are Implemented V

 Browser based Apps.
 Run using an optimized “web browser” for the mobile device.
 Can be made in any web language (HTML, PHP, Python, Perl,

JavaScript).
 Can be made and displayed using specialized web applications:

FLASH LITE.
 Limitation has been bandwidth… thank you 3G & 4G.
 Apples refusal to support Flash has changed this market

significantly as HTML5 is still NOT in widespread use.

What's different about mobile
app programming

3/7/12

5

Physical Requirements

 Team Size:
  Conventional platform applications require large teams of 50 or

more people, often working in separate and unique roles.
  Mobile applications can be developed by groups as small as 3-5

people with individuals supporting several areas.
  In fact mobile application developers are more likely to be required

to wear multiple hats: that is design, code, debug and market.

 Budget:
  Conventional apps have budgets in the 1.5-5 million dollar range.
  Most mobile apps are implemented for less then $100,000.
  Limited capabilities of the devices being designed for are actually an

advantage.

Development & Deployment

 Development LifeCycle:
  Conventional applications take on average 2-3 years to develop.
  Most mobile apps are completed in a few months.
  Small team, with small budget, using iterative development can

create a quality game fairly quickly.
  EVERTHING YOU HAVE LEARNED ABOUT SOFTWARE

DEVELOPMENT STILL APPLIES!
  Development Lifecycle
  Development Methodologies

 Deployment
  Conventional apps are (mostly) purchased in software outlets.
  Mobile apps are (mostly) downloaded and installed.
  Distribution channels for mobile apps included built in menus,

carrier menus as well as wireless/web portals.
  End of the CD, DVD, Blue-Ray?

Standards & Features

 Open Standards:
  Console development requires “royalties” in order to develop

games… in the mobile world, not so much.
  Standards underlying mobile game development are published, open

and available for review.
  Profit for manufactures is in selling the hardware (the phones) and in

“app stores” where they take a percentage of the sales.

 Networked Devices:
  Mobile devices may be limited in input, output and display but they

have powerful network capabilities built-in.
  Infrastructure supporting devices can be easily leveraged for network

apps, very rare to need to write any network support code.
  The portable nature of the phones themselves makes short range

wireless (blue-tooth) also an option.

Strengths & Limitations
of the Medium

3/7/12

6

Strengths

 HUGE potential audience.
 Around 1.2 billion smart phones worldwide
 Over 73 million smartphones in the US alone

 Portability
 Apps can be used whenever and wherever people choose.
 Greater chance for “viral” exposure to apps where users hear

about an app from other users (free marketing).

 Networked
 Mobile devices come pre-networked.
 Socials apps already showing tremendous promise.
 Very unusual to have to write any extra network features.

Limitations I

 Limited Output (not just screen size).
 Can't see an app with your fingers in the way AND Harder to

get control and help information on the screen.
 Fewer colors, refresh rates supported.
 Sound problems (codecs, and the speakers themselves).

 Limited Application Size.
 Limited RAM is just a fact of life and graphics add up (rule of

thumb, target < 10% of RAM available.
 Limited processing power must also be considered. Ex: How

many collision checks need to be made in each frame.
 Efficient algorithms just as important as with regular

applications.

Limitations II

 Latency
  3G is an improvement, as is 4G where available, but latency in

multiplayer games is always going to be a problem.
  Moreover some of the processor intensive tricks (bit-packing/bit-

compressions) used to handle latency in regular applications, don't
translate well to mobile devices.

  Interrupt ability is crucial.
  If the phone rings, the player better be able to stop the app and then

pick up where they left off.
  Again, most mobile languages support the "reflective" paradigm.

  Rapidly evolving technologies.
  All of those poor saps who thought they had the mobile app market

covered with BREW got dealt a really rude surprise by the IPhone.
  Android in turn has already almost twice the installed based of IOS.

Making it Work

3/7/12

7

Keep it short and simple

 Don't attempt too much in any single application!
 Keep the scale of the application and the time required by the

application to accomplish any goal low.
 What if they want to make a call?
 Don’t want to run down the battery.
 If they had more time, they would choose a different platform.

 NEVER force them to wait (instant on).
 Allow for saves, pauses, repeats, skips, etc.

 Use the network.
 A phone is a social device.
 How can your app tie into a persons existing social network

Understand the limitations of the platform

 Plan for the processor and RAM allotment.
  Aim to use far less then what you think is available (5-10%).
  Use a smart timing loop (like an update manager) to keep track of

performance.
  Allow processor heavy features (particle effects, 3D effects, complex

animations) to be turned on and off (just a flag in the loop).
 Plan for the form factor.

  Avoid designs that require a player to look at many places (in a larger
world) in a short period of time.

  Avoid making the player “switch” views often. It’s best if entire world,
everything user needs, can be seen on screen at once.

  It’s best if player only has to “control” one object in the world.
  Keep the control scheme as simple as possible!!!

 3-4 action possibilities
 Ask yourself: "Can I do everything with one thumb?"

Plan Ahead!!!

 Design for a business model.
  Application sale.
  Advertising revenue or product tie-in.
  Trial versions.
  One month licenses.
  Charging for “data traffic” or “airtime”.

 This last model is increasingly popular in foreign markets, but as not
yet become normative in U.S.

 Plan to support multiple devices.
  At a minimum plan your app to support multiple screen sizes.
  Better yet, target a large pool of devices.
  Android and Eclipse now support tools for multiple output formats.

For More Information

3/7/12

8

IPhone

 IPHONE
 FREE to develop, but applications must be approved and

Apple takes cut (30%)
 FREE online IPhone programming course from Stanford

University:
 http://www.stanford.edu/class/cs193p/cgi-bin/index.php

  IPhone Developers Network:
 http://developer.apple.com/iphone/

Flash

 FLASH LITE – Part of Adobe CS5
 Free 30 day trial, then $300-$500.
 Flash Lite download (mobile devices):

 https://www.adobe.com/cfusion/entitlement/index.cfm?
e=flashcdk

 Flash Lite games can be exported as iPhone applications (Castle
Crashers).

 Flash Lite – Best Practices:
 http://www.adobe.com/devnet/devices/articles/

cryptic_capers_print.html

Mobile (Android) Processing

 Processing – A Java based scripting environment for
mobile devices.
 FREE: http://www.processing.org/
 Learning the Processing Language:

 http://processing.org/learning/

 Getting started making processing Apps for Android
 http://wiki.processing.org/w/Android
 http://blog.blprnt.com/blog/blprnt/processing-android-mobile-

app-development-made-very-easy

Android

3/7/12

9

History

 Android is a small, light-weight, Linux-based
operating system for mobile devices.

 Google acquired the rights to the Android OS by
buying out the company Android Inc. in 2005.

 Android is now maintained and developed by the
Open Handset Alliance (a consortium of mostly
hardware manufacturing firms to develop open
standards for mobile devices) led by Google.

 First-ever Android device was the
 T-Mobile G1 released in October 2008.

Android as an OS

 Although Android is a Linux distro, it is difficult to port
existing Linux applications or libraries to Android.
  Android's uses a Linux kernel outside the typical Linux kernel

development cycle (non –Debian) .

  Android does not have a native X Window System nor does it support
the full set of standard GNU libraries.

 Linus Torvalds said that "eventually Android and Linux
would come back to a common kernel, but it will
probably not be for four to five years".

  In general the standard folder layout is the same as other
flavors of Linux and common applications are present or
have an easy replacement (example: Android users have
SQL-Lite for storage rather than MySQL).

Native Development Kit (NDK) in Android

 The Android NDK is a software package designed to work
with the Android SDK and it allows users to build
performance-critical portions of their apps in native code
(C, C++).

 NOTE: Native code files/applications are still packaged
into an .apk file and still run inside of a virtual machine
on the device.

 The NDK is designed for use only in conjunction with the
Android SDK (you will NEED both).

 From the Android Development Site:
  " If you have NOT run into any limitations using the Android [SDK]

framework APIs, you probably do not need the NDK. "

Android Software Development Kit (SDK)

  The Android software development kit (SDK) is set of
development tools (debugger, libraries, a handset emulator
sample code, tutorials, etc.) for use in creating Android
applications that is supported by all major platforms (Linux,
Mac, Windows).

  The officially supported IDE for the SDK is Eclipse using the
Android Development Tools (ADT) Plugin, though developers
may use any text editor to edit the Java and XML files in the
SDK (command line compilation with Apache ANT will then
be required).

  Android applications are packaged in .apk format and stored
under /data/app folder on the Android OS (accessible only to
root uses). APK packages contain .dex files (compiled byte
code files called Dalvik executables), resource files, etc.

3/7/12

10

Brush up on your Java

 Key feature of developing Apps for the SDK is using
the event-listener classes and interfaces that are
included in the SDK.

 Users create graphic objects that can "extend" event-
listener classes or "implement" event-listener
interfaces.

 Good Sites to Use:
 http://docs.oracle.com/javase/tutorial/
 http://www.roseindia.net/java/master-java/index.shtml

Android Getting Help

 Android Developers Website:
  http://www.developer.android.com

 Basic Tutorials:
  http://developer.android.com/resources/browser.html?tag=tutorial

 Another "Intro to Android" lecture set:
  http://www.vogella.de/articles/Android/article.html

 Tutorial on a Database Backed Android App
  http://hackaday.com/2010/07/12/android-development-101-

%E2%80%93-a-tutorial-series/

 Even More Tutorials Covering a Range of Topics:
 http://webdesignlists.com/top-10-best-android-tutorials-for-developers.html/

What you will be doing in the labs.

  You DON'T need an
Android Mobile Device!

  The Android SDK allows
you to setup and configure
an emulator also know as
an Android Virtual Device
(AVD) on your computer.

  You will then write
programs in Eclipse and
run them on the AVD.

  The AVD will allow you to
interact with your APP.

S E R I O U S L Y ,
Y O U C A N D O T H I S ! ! !

YOU CAN DO THIS!

