l l I I I max planck institut
informatik

Lempel-Ziv compression: how and why?
Algorithms on Strings

Pawet Gawrychowski

July 9, 2013



Lempel-Ziv compression Computing the factorization Using the factorization

0000 000000 000000

ini p BN g i July 9, 2013 2/18



Lempel-Ziv compression Computing the factorization Using the factorization
0000 000000 000000

Outline

Lempel-Ziv compression
Computing the factorization

Using the factorization

ini p BN g i July 9, 2013 2/18



Lempel-Ziv compression Computing the factorization Using the factorization

@000 000000 000000

Today and next week we are going to talk about compression.
There different lossless compression methods, but most of the
modern applications are using on of the two.

Burrows-Wheeler transform

Based on the suffix array. Not very nice in theory, but useful in
practice. Wait till the next week!

If your data contains the same fragment again and again, writing
it down multiple times doesn’t make much sense. Maybe we
could do better? Let’s try!

July 9, 2013 3/18

inn p |



Lempel-Ziv compression Computing the factorization Using the factorization
0e00 000000 000000

Lempel-Ziv based compression schemes

Text t is partitioned into a number of disjoint blocks by bs . .. bp,.
Each block is defined in terms of the blocks on the left.

What “defined” exactly means depends on the exact variant. The
most common are:

LZ77 new block b; is a subword of by bs . .. b;_1
concatenated with exactly one character,
zip,gzip,PNG

LZ78, LZW new block b; is created by appending exactly one
character to one of the previous b;.
compress,GIF,TIFF,PDF

In both cases, we make the new block as long as possible, i.e.,
we use greedy parsing.

[ f p [ | O July 9, 2013 4/18



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e] o] 000000 000000

Example of LZW compression:

ababbababababababababaabbbaa

July 9, 2013 5/18

i p [ | i



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e] o] 000000 000000

Example of LZW compression:

ababbababababababababaabbbaa

July 9, 2013 5/18

i p [ | i



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e] o] 000000 000000

Example of LZW compression:

ababbababababababababaabbbaa

NN

July 9, 2013 5/18

i p [ | i



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e] o] 000000 000000

Example of LZW compression:

ababbababababababababaabbbaa

NN

Even though n € Q(v/N), you can compress/decompress very
quickly!

max p anck institut July 9, 2013 5/18




Lempel-Ziv compression Computing the factorization Using the factorization

[eJe]e] ] 000000 000000

Example of LZ compression:

ababbababaaabbababaabaabbbaa,

[ f p | | R July 9, 2013 6/18



Lempel-Ziv compression Computing the factorization

[eJe]e] ] 000000

Using the factorization
[e]e]e]e]e]e)

Example of LZ compression:

ababbababaaabbababaa

baab

bbaa

l l I I I max planck institut
informatik

July 9, 2013

6/18



Lempel-Ziv compression Computing the factorization

[eJe]e] ] 000000

Using the factorization
[e]e]e]e]e]e)

Example of LZ compression:

ababbababaaabbababaa

baab

bbaa

NS

l l I I I max planck institut
informatik

July 9, 2013

6/18



Using the factorization
[e]e]e]e]e]e)

Computing the factorization

Lempel-Ziv compression

[eJe]e] ] 000000

Example of LZ compression:

ababbababaaabbababaabaabbbaa

NS

It might happen that n = O(log N). Such situation is rather
unlikely in practice, but it happens for Fibonacci words, and they
are often considered to be the benchmark for string algorithms.

July 9, 2013 6/18

l l I I I max planck institut
informatik



Using the factorization
[e]e]e]e]e]e)

Computing the factorization

Lempel-Ziv compression

[eJe]e] ] 000000

Example of LZ compression:

ababbababaaabbababaabaabbbaa

NS

It might happen that n = O(log N). Such situation is rather
unlikely in practice, but it happens for Fibonacci words, and they
are often considered to be the benchmark for string algorithms.

Sometimes we are interested in the version which is not
self-referential.

6/18

[ f p | | O July 9, 2013



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] ®00000 000000

We will solve a more difficult problem.

Longest previous substring

For a given string w[1..n] we define an array LPF[1..n]. LPF[i] is
the largest k such that w[i..i + k — 1] occurs starting somewhere
on the left of i. More formally, wli..i+k — 1] = w[i'"..i' + k — 1]
with /" < i. Note that the previous occurrence is allowed to
overlap with wii..i+ k — 1]!

[ f p | | O July 9, 2013 718



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] O®@0000 000000

Having the LPF[1..n] table, we can easily output the
self-referential LZ parse.

= Start with / = 1.

= Qutput w[i..i + LPFJi]] as the next block.
® |ncrease i by LPF[i] + 1.

® Repeat.

Message to take back home
Sometimes it pays off to reduce a more complicated problem.

ini p BN g i July 9, 2013 8/18



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] [e]e] le]ele] 000000

Now we focus on computing all LPF{/].

For each i we want to maximize over all i/’ < j the longest
common prefix of w[i..n] and w[/’..n].

This is difficult, so let’s try something simpler.

For each i we want to maximize over all i/’ # i the longest
common prefix of w[i..n] and w[/’..n].

This is simple! Just take the predecessor/successor of i in the
suffix array. Check which one is better by either executing two
LCP queries (we know how to do that in constant time,
remember?), or just use the Icp array (much simpler).

LT LR iy, 2013 o1



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] O00e00 000000

Now, it might happen that we will get i > i, which is not really
useful. But for i = n this cannot happen, hence we know how to
compute LPF[n] in constant time. What then?

Remove win..n] from the suffix array. Then by looking at the
predecessor/successor of n — 1 in the (remaining part of the)
suffix array we get i # n — 1 maximizing the longest common
prefix, which is the same as i/ < n — 1 maximizing the longest
common prefix, so we can compute LPF[n — 1]. Then remove
w[n — 1..n] from the suffix array, and look at the
predecessor/successor of n — 2 to compute LPF[n — 2].

[ f p | | O July 9, 2013 10/18



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] [e]e]ele] Je] 000000

This works in constant time per each i assuming that we can:

® maintain the suffix array under removing any wli..n] and
retrieving the predecessor/successor of any wli..n|,

= compute the longest common prefix of any w[i..n] and its
predecessor/successor in the current suffix array.

For the first part, just use a doubly-linked list to store SA. For the
second part, the lazy way is to apply the whole LCP machinery,
i.e., assume that we can compute the longest common prefix of
any two suffixes in constant time.

inn p | July 9, 2013 1118



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] O0000e 000000

Simpler solution for the second part: maintain not only SA, but
also lcp, which are the the longest common prefixes between any
two neighbours in the current suffix array. Say that we remove an
element from the current suffix array. So, we had

o wx.n),wly..n],w[z..n], ...
and we want to leave
o, wx..n,wlz..n], ...

We knew LCP(w(x..n], w[y..n]) and LCP(w(y..n], w[z..n]), Then,
LCP(w[x..n], w[z..n]) is simply the minimum of these two, so we
can maintain all data in constant time per update.

All LPF[i] can be computed in constant time per entry. |

[ f p | | R July 9, 2013 1218



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] 000000 [ Jole]e]e]e]

Surprisingly, the LZ factorization can be used to speed-up some
string algorithms. A canonical example is detecting regularities,
or simply squares.

Detecting squares

Given a word w, locate its substring w[i..j] which is a square. A
square is a word of the form xx.

Squares in everyday life
tamtam, cancan

ck institut July 9, 2013 13/18




Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] 000000 [¢] leJe]e]e]

Intuition

Lz factorization can help us to detect repetitions in our word: if
some fragments repeats, the corresponding part of the parse
should be short.

To formalize the intuition, look at the LZ parse

w[1..n] = bi1bs ... b,. Look at the leftmost square w(i..j] = xx
(leftmost means that j is smallest possible). Say that it ends
inside bx. Where can it begin?

(wli..j]| < 2|bk—1b|

So, the leftmost square cannot begin too far to the left.

[ f p | | O July 9, 2013 14/18



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] 000000 [e]o] le]e]e]

\wli..j]| < 2|bk—1bx|

Assume |w[i..j]| > 2|bx_1bk| and draw a picture.

|br—1b]

| | ] o

| v | T |

Whole bx_1 is inside the second x, so also inside the first x, so it
occurs before. But bx_1 was chosen to be as long as possible,
and it turns out that could be actually one character longer.

inn p | July 9, 2013 15/18



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] 000000 [e]o]e] lele]

Using iterate over all possible k and try to use the lemma to
detect the leftmost square ending in bx. So, we need the
following procedure.

Procedure

Given two consecutive fragments of w, say w[i..jlw[j + 1..k],
detect a square ending in w[j + 1..k] and centered somewhere in
wli..j] in O(|wli..k]|) time.

Assuming that we know how to achieve such complexity, our total
running time will be >, O(2|bx_1bxk|) = O3y |bk|) = O(n).

[ f p | | O July 9, 2013 16/18



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] 000000 [e]o]e]e] Jo]

Now let’s try to implement the procedure.

] wli..j] | w(j + 1..k] \

We guess A = |x|.

inl p | | O July 9, 2013 17718



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] 000000 [e]o]e]e] Jo]

Now let’s try to implement the procedure.

A

wli..j] i w[j + 1..K] |

T | z |

We guess A = |x|. Then, both green/blue fragments are the
same.

in p | | O July 9, 2013 17718



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] 000000 [e]o]e]e] Jo]

Now let’s try to implement the procedure.

A

L T | z |

We guess A = |x|. Then, both green/blue fragments are the
same.

in p | | O July 9, 2013 17718



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] 000000 [e]o]e]e] Jo]

Now let’s try to implement the procedure.

A

We guess A = |x|. Then, both green/blue fragments are the
same.

max |!y!dl;lllkk institut July 9, 2013 17/18

lllpll




Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] 000000 [e]o]e]e] Jo]

Now let’s try to implement the procedure.

A

We guess A = |x|. Then, both green/blue fragments are the
same. With longest common prefix/suffix queries we can
compute in constant time the longest such green/blue fragment.

(] p | | O July 9, 2013 17718



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] 000000 [e]o]e]e] Jo]

Now let’s try to implement the procedure.

\j

We guess A = |x|. Then, both green/blue fragments are the
same. With longest common prefix/suffix queries we can
compute in constant time the longest such green/blue fragment.

(] p | | O July 9, 2013 17718



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] 000000 [e]o]e]e] Jo]

Now let’s try to implement the procedure.

\j

We guess A = |x|. Then, both green/blue fragments are the
same. With longest common prefix/suffix queries we can
compute in constant time the longest such green/blue fragment.
We check if £ + r < A. It’'s clear that such condition is necessary
for a square to exists, and it turns out to be sufficient.

inn p | July 9, 2013 17118



Lempel-Ziv compression Computing the factorization Using the factorization

[e]e]e]e] 000000 [e]o]e]e]e] ]

So, we first find the LZ factorization (in linear time), then use the
procedure z times. The total running time is linear, assuming that
we can compute the longest common prefix/suffix between any
two fragments in constant time (which we know how to do).

Theorem
The leftmost square can be found in linear time.

inn p | July 9, 2013 18/18



	Lempel-Ziv compression
	

	Computing the factorization
	

	Using the factorization
	


