CISC 3142 — Class Definitions Test Bank

1. A declaration provides ______, while a definition provides ______.
a. usage sites; linkage specification
b. an announcement; the full details
c. binary code; source code
d. storage; header guards

2. Which can usually appear multiple times without error?
a. A class definition
b. A variable definition
c. A function definition
d. A declaration

3. In class context, the definition consists of:
a. Only data members
b. Only member functions
c. Both member function declarations and data member declarations
d. Constructor bodies only

4. In the class definition, storage for data members is allocated:
a. At the point of class definition
b. When an object is instantiated
c. When the header is included
d. By the linker

5. Providing function bodies inside the class definition makes those functions:
a. virtual
b. constexpr
c. inline
d. static by default

6. Forward declaring a class is written as:
a. class Simple;
b. struct Simple {}
c. using Simple;
d. namespace Simple;

7. One motivation for separating interface (.h) and implementation (.cpp) is:
a. To require templates
b. To hide and organize function bodies
c. To avoid constructors
d. To disable inlining

8. Placing all definitions inline in the header implies:
a. No need for a .cpp file
b. Linker errors always occur
c. Headers cannot include standard headers
d. Only templates are allowed

9. Large or complex functions are often placed:
a. Inside the class definition
b. After main()
c. In the corresponding .cpp source file
d. In unrelated headers

10. In the constructor 'Simple(int val) : val(val) {}', the 'val' outside parentheses refers to:
a. A global variable
b. The parameter
c. The data member
d. Undefined behavior

11. The member initializer list format is:
a. member = expression
b. member(expression)
c. this.member := expression
d. member <- expression

12. Initializer lists eliminate the need for:
a. Constructors
b. this in many cases
c. Destructors
d. Headers

13. Accessing 'val' inside getVal() refers to the 'val' of:
a. The most recently created object
b. The receiving object
c. A hidden static variable
d. The parameter to main

14. Parameters with same names as data members:
a. Are forbidden
b. Shadow the members
c. Automatically rename
d. Trigger link-time errors

15. Where is class scope guaranteed for member functions?
a. Only in .cpp files
b. Only if 'using namespace' is present
c. Inside the class body or via 'ClassName::' outside
d. Only for static members

16. The operator used to place an out-of-class definition into class scope is:
a. ::
b. .
c. ->
d. :

17. Which placement makes getVal() inline by definition?
a. In the .cpp file
b. Inside the class body in the header
c. In a separate inline.cpp
d. In a namespace block only

18. An inline function definition repeated across translation units is acceptable if:
a. The bodies are identical
b. They have different bodies
c. They include 'static'
d. They are templates only

19. Separating the interface and placing 'inline Simple::getVal() { ... }' after the class in the header requires:
a. Only 'virtual'
b. Only 'constexpr'
c. Both 'inline' and scope resolution
d. Only 'friend'

20. Including the same header from multiple sources leads to:
a. Automatic deduplication
b. Potential multiple-definition issues if function bodies are non-inline
c. No effect ever
d. Compile-time halts

21. Class definitions do not cause multiple-definition errors because:
a. They allocate storage
b. They are type descriptions
c. The linker ignores them
d. They are compiled away

22. Inline functions in headers are safe provided:
a. Each translation unit changes them slightly
b. They are identical across inclusions
c. They are declared static
d. They are omitted from headers

23. A typical arrangement is:
a. Definitions in .h only; declarations in .cpp
b. Member declarations in .h; member definitions in .cpp
c. All code in .cpp; headers empty
d. Headers compile themselves

24. If both app.cpp and a utilities header include <string>, the <string> header is:
a. Included twice by the preprocessor
b. Ignored the second time
c. Moved to .cpp
d. Renamed automatically

25. Why don’t identical class definitions in multiple translation units cause link errors?
a. They are guarded by #pragma
b. They are merged as type information
c. They become static objects
d. They’re deferred to runtime

26. One reason to avoid putting many bodies in headers is to:
a. Force template usage
b. Reduce clutter and hide implementation details
c. Speed up linking always
d. Prevent inlining

27. A static data member has how many copies per class?
a. One per object
b. One per class
c. One per namespace
d. Unlimited

28. Static member functions:
a. Require a receiver
b. Do not have a receiver and can access only static members
c. Are always inline
d. Cannot appear in headers

29. Static data members are typically initialized:
a. Inside the class body only
b. In the corresponding .cpp file
c. Via macros only
d. By the linker

30. Given 'static int nextId;' in Simple.h, the definition in Simple.cpp is:
a. static int nextId = 1000;
b. int nextId = 1000;
c. int Simple::nextId = 1000;
d. static Simple::nextId = 1000;

31. Static member functions are invoked as:
a. obj.f()
b. this->f()
c. Simple::f()
d. namespace::f()

32. Non-static members can be read from a static function:
a. Directly
b. Via implicit this
c. Only via an object passed in
d. Never even with an object

33. Pre–C++11, non-static data members:
a. Could be initialized in-class freely
b. Could not be initialized at the point of declaration
c. Required inline constructors
d. Had to be const

34. Headers should avoid 'using namespace' because:
a. It slows the compiler
b. It pollutes the includer’s namespace unexpectedly
c. It prevents inline functions
d. It breaks templates

35. A header with 'using namespace std;' makes 'string' mean:
a. A global string
b. std::string for any includer after that line
c. A typedef
d. char*

36. Instead of 'using namespace' in headers, prefer:
a. Macros
b. Fully qualifying names like std::string
c. Global variables
d. Friend declarations

37. The compiler processes:
a. Only project files it finds automatically
b. Exactly the .cpp being compiled plus the files included by it
c. All .cpp in the directory
d. Only headers

38. The notion of 'ownership' of the source file implies headers are:
a. Free to change global state
b. Guests that shouldn’t change includer semantics
c. Entrypoints
d. Independent programs

39. In an example, app.cpp and custom_string_utils.h both include <string>. The result is:
a. The second include is skipped by the preprocessor
b. Two copies are included textually
c. A link-time error
d. A compile-time crash

40. After including a header that had 'using namespace std;', writing 'string s;' in a .cpp means:
a. A new type
b. std::string silently
c. A compile error
d. A void pointer

41. Inline code within headers should also:
a. Avoid fully qualifying
b. Use using namespace to be shorter
c. Fully qualify types and names
d. Be placed in .cpp instead

42. As of C++11, non-static data members may be:
a. Initialized at the point of declaration
b. Left undefined always
c. Only static
d. Initialized only in main

43. Separating definitions from declarations requires the syntax:
a. ClassName.
b. ClassName::
c. namespace::
d. this->

44. Functions defined after the class in the header (not inside the class) must be marked:
a. virtual
b. static
c. inline
d. constexpr

45. A class definition placed in a header should primarily contain:
a. Data members and member function declarations
b. Only function bodies
c. Only includes
d. Only templates

Answer Key
1. b — A declaration announces existence; a definition supplies the details.
2. d — Repeated declarations are allowed; definitions are generally unique.
3. c — The class definition lists data members and member function declarations.
4. b — Data member declarations allocate storage only when objects are created.
5. c — Functions defined inside the class are inline by definition.
6. a — A class declaration announces existence: class Simple;
7. b — Separating interface and implementation reduces clutter and hides details.
8. a — If all definitions are inline in the header, a .cpp may be unnecessary.
9. c — Keep class definition uncluttered; function bodies go in .cpp.
10. c — Outside the parens is the data member; inside is an expression (here, parameter).
11. b — Member initializers use member(expression) syntax.
12. b — The fixed member(expression) syntax removes ambiguity without 'this'.
13. b — Unqualified member access refers to the receiver’s data members.
14. b — A parameter named 'val' shadows the data member unless qualified.
15. c — Place bodies inside class or qualify with scope resolution operator.
16. a — Use the scope resolution operator '::'.
17. b — Function bodies inside the class are inline by definition.
18. a — Identical inline definitions avoid multiple-definition errors.
19. c — Out-of-class inline definitions in headers need 'inline' and 'Class::'.
20. b — Non-inline bodies in headers would cause multiple-definition at link time.
21. b — Type descriptions can appear identically in multiple translation units.
22. b — Identical inline bodies are permitted across translation units.
23. b — Interface in .h and implementation in .cpp is conventional.
24. a — Preprocessor expansion will include each time it appears.
25. b — Type info is consistent; no objects or bodies are duplicated.
26. b — Separating keeps headers concise and hides bodies in .cpp.
27. b — Static members are shared by the class as a whole.
28. b — They lack *this and access only static data.
29. b — Define and initialize in the .cpp with Class::member = value;
30. c — Qualify with Class:: for the out-of-class definition.
31. c — Call with ClassName::function().
32. c — Static functions can access non-static via an object reference.
33. b — Initialization at declaration was not allowed (pre–C++11).
34. b — Header 'using' affects all code after inclusion in the includer.
35. b — It silently resolves to std::string in the includer.
36. b — Use fully qualified names to avoid pollution.
37. b — Ownership: compiler sees one .cpp and whatever it includes.
38. b — Headers must not alter the includer’s semantics (e.g., by 'using').
39. b — Preprocessor includes both; header guards and ODR (one definition rule) rules matter.
40. b — Namespace pollution makes string resolve to std::string.
41. c — Inline code in headers must avoid 'using' and fully qualify names.
42. a — The notes mark C++11 allowing in-class member initializers.
43. b — Use the scope resolution operator with the class name.
44. c — Mark as inline to avoid multiple-definition across TUs.
45. a — Interface belongs in the header; bodies usually go to .cpp.
