CISC 3142 — Pointers, Arrays, and References Lecture Test Bank

1. The operator '&' yields:
a. The address of its operand
b. The value stored in its operand
c. A copy of its operand
d. A null reference

2. The operator '*' when applied to a pointer:
a. Multiplies it
b. Converts it to a reference
c. Dereferences it to yield the referent
d. Creates a copy

3. The expression '*&x' is equivalent to:
a. x
b. &x
c. *x
d. x*

4. The expression '&*p' is equivalent to:
a. p
b. *p
c. &p
d. undefined

5. If p is a pointer, p->f() means:
a. Call f through pointer p
b. Address of f
c. Assign pointer
d. Static call

6. If int *p; int x=5; p=&x; then *p = 7; causes:
a. x to remain 5
b. x to become 7
c. p to change
d. undefined behavior

7. Pointers are typically used to:
a. Reduce speed
b. Avoid copying, provide indirection
c. Prevent initialization
d. Make types incompatible

8. A pointer variable stores:
a. The address of another object
b. A copy of the object
c. A constant value
d. A structure

9. Pointer types differ by:
a. The values stored
b. The type they point to
c. Nothing significant
d. Storage class

10. int *p, q; declares:
a. Both p and q as pointers
b. p as pointer, q as int
c. Both as ints
d. Error

11. If q is int and p=&q; then &p yields:
a. A pointer to q
b. A pointer to p
c. A reference to q
d. An error

12. A null pointer literal in modern C++ is:
a. NULL
b. 0
c. nullptr
d. nil

13. Dereferencing a null pointer causes:
a. Zeroing memory
b. Crash/undefined behavior
c. Stack growth
d. Return 0

14. The correct type for a pointer to double is:
a. *double
b. double*
c. &double
d. ptr<double>

15. sizeof(p) where p is int* gives:
a. Number of elements pointed to
b. Size of int
c. Size of pointer variable
d. Size of array

16. In C++, the name of an array in most expressions:
a. Acts as a pointer to its first element
b. Holds array size
c. Is always copied
d. Cannot be used in expressions

17. The expression *(a+i) is equivalent to:
a. a[i]
b. &a[i]
c. a+i
d. *a+i

18. If int a[5]; then a+2 points to:
a. a[0]
b. a[2]
c. a[3]
d. out of range

19. Pointer arithmetic increments by:
a. One byte
b. Size of the pointed-to type
c. Compiler setting
d. Random offset

20. The subscript operator [] is defined as:
a. a[i] == *(a+i)
b. a[i] == &a+i
c. a[i] == a+i
d. a[i] == *a-i

21. Arrays passed to functions are received as:
a. Copies of the entire array
b. Pointers to first element
c. References to last element
d. By value

22. The sizeof operator on an array parameter inside a function gives:
a. Total bytes in array
b. Size of pointer
c. Size of elements
d. Undefined

23. To count elements in array a in same scope:
a. Use sizeof(a)/sizeof(a[0])
b. Use strlen(a)
c. Use capacity(a)
d. Impossible

24. If arr is int[10], valid index range is:
a. 0–9
b. 1–10
c. 0–10
d. Undefined

25. Accessing arr[10] in int arr[10]; is:
a. Valid
b. Undefined behavior
c. Zero
d. Wrap-around

26. If int *p=a; then p++ advances:
a. 1 byte
b. 1 element
c. 2 elements
d. To null

27. If *p++ is evaluated, it means:
a. Increment pointer after dereferencing
b. Dereference after incrementing pointer
c. Multiply pointer by 2
d. Syntax error

28. The relation between arrays and pointers is:
a. Identical types
b. Distinct but closely related
c. Unrelated
d. Automatic references

29. When passing an array to a function expecting int*, you must pass:
a. &a
b. a
c. *a
d. a[]

30. The operator new allocates:
a. Memory on heap
b. Memory on stack
c. Temporary variable
d. Global section

31. The operator delete frees:
a. Stack variables
b. Heap memory allocated by new
c. Static variables
d. References

32. Failing to delete allocated memory causes:
a. Dangling references
b. Memory leaks
c. Segmentation fault immediately
d. Faster performance

33. Accessing deleted memory leads to:
a. Undefined behavior
b. Zero initialization
c. Automatic recovery
d. Compiler error

34. The correct pair is:
a. new/delete
b. malloc/free
c. open/close
d. alloc/dealloc

35. To allocate an array dynamically:
a. new int(10)
b. new int[10]
c. malloc(10*sizeof(int))
d. auto int[10]

36. To free a dynamic array:
a. delete p;
b. delete[] p;
c. free(p);
d. p=nullptr;

37. The result of new int[5] is:
a. int
b. int&
c. int*
d. array reference

38. Setting pointer to nullptr after delete:
a. Is required by compiler
b. Avoids accidental reuse
c. Prevents copy
d. Changes object lifetime

39. Dynamic allocation differs from local variables because:
a. It’s reclaimed automatically
b. It persists beyond scope
c. It’s faster
d. It requires const

40. If delete is applied twice to same pointer:
a. Safe
b. Undefined behavior
c. Releases both copies
d. Compiler error

41. The term garbage refers to:
a. Deleted memory
b. Unreachable allocated memory
c. Freed stack frames
d. Temporary variables

42. To test successful allocation, check:
a. Pointer != nullptr
b. Pointer > 0
c. sizeof(pointer)
d. delete success

43. Dynamic arrays should track:
a. Logical size and capacity
b. Only type
c. Filename
d. Return type

44. A reference variable must be:
a. Declared but not initialized
b. Initialized when declared
c. Assigned later
d. Copied

45. Once bound, a reference:
a. Can be reseated
b. Cannot be reseated
c. Becomes null
d. Loses type

46. References differ from pointers because:
a. They can be null
b. They always require dereference
c. They are automatic aliases without indirection syntax
d. They hold addresses

47. The syntax for reference declaration is:
a. int *r;
b. int &r;
c. ref<int> r;
d. int ->r;

48. A reference is implemented internally as:
a. A pointer-like alias
b. An object copy
c. A global
d. A template

49. Passing by reference allows:
a. Copies of argument
b. Direct modification of caller variable
c. Constantness
d. Destruction of argument

50. Const reference parameters:
a. Allow mutation
b. Prevent modification
c. Copy the argument
d. Are unsafe

51. Returning by reference is safe when:
a. Returning a local variable
b. Returning an object that outlives the call
c. Returning from inline function
d. Returning temporaries

52. The expression &ref returns:
a. Address of referent
b. Copy of reference
c. Value of object
d. Temporary

53. Assigning through a reference means:
a. Copying address
b. Modifying referent
c. Rebinding reference
d. Allocating memory

54. The main advantage of references over pointers is:
a. They can be reseated
b. They eliminate * and & syntax
c. They work only for arrays
d. They’re always nullable

55. C++ references correspond most closely to:
a. Java references
b. C pointers
c. Python variables
d. C# handles

56. A function parameter declared as T*& p means:
a. Pointer to pointer
b. Reference to pointer
c. Pointer to reference
d. Reference to reference

57. Using T*& allows the function to:
a. Modify what pointer points to and rebind caller’s pointer
b. Access only local copy
c. Change pointee but not pointer
d. Disable rebinding

58. The 'checkCapacity' function uses pointer reference to:
a. Return pointer to stack
b. Resize dynamic array and update caller’s pointer
c. Destroy array
d. Prevent leaks

59. Growing an array typically involves:
a. Changing length field
b. Allocating a new larger array and copying elements
c. Extending stack
d. Casting pointer

60. Capacity vs size distinction:
a. Capacity is logical size
b. Size is physical limit
c. Capacity is allocated space, size is elements used
d. They are identical

61. Deleting the old array after copy prevents:
a. Type errors
b. Leaks
c. Overflows
d. Pointer aliasing

62. After delete[], setting pointer to nullptr:
a. Causes crash
b. Is best practice
c. Required by compiler
d. Prevents copy

63. A dangling reference occurs when:
a. Pointer freed but reference still exists
b. Pointer set to nullptr
c. Reference reseated
d. Pointer incremented

64. In checkCapacity, copying elements uses:
a. Assignment
b. Pointer arithmetic with loop
c. Deep copy
d. All of the above

65. After reallocating a dynamic array:
a. Old pointer still valid
b. Old pointer invalid; must be updated
c. Data overlaps
d. Automatic resize

66. To increase array size safely:
a. Modify existing block
b. Reallocate larger block and copy
c. Cast pointer to larger type
d. Use sizeof

67. A C++ vector encapsulates:
a. Static array
b. Growable array with managed capacity and automatic reallocation
c. Only references
d. Stack memory only

Answer Key
1. a — & produces the address of a variable.
2. c — *p yields the object pointed to by p.
3. a — Dereferencing the address of x returns x.
4. a — &* cancels out when p is valid.
5. a — p->f() is shorthand for (*p).f().
6. b — Dereferencing modifies x via pointer.
7. b — They enable indirect access and avoid copying.
8. a — Pointers hold memory addresses.
9. b — Type safety requires matching pointed-to type.
10. b — Only p is a pointer; q is int.
11. b — &p is address of pointer variable itself.
12. c — nullptr is the modern null literal.
13. b — Accessing null pointer is undefined behavior.
14. b — Pointer syntax: double* p;
15. c — sizeof(pointer) gives size of pointer type.
16. a — Array name decays to pointer to first element.
17. a — Pointer arithmetic defines *(a+i) == a[i].
18. b — Pointer arithmetic advances two elements.
19. b — Increment moves pointer by sizeof(T).
20. a — By definition, [] is pointer arithmetic plus dereference.
21. b — Parameter decays to pointer.
22. b — Array parameter is pointer; sizeof yields pointer size.
23. a — Divide total bytes by element size.
24. a — Arrays are zero-indexed with range 0 to 9.
25. b — Out of bounds access is undefined.
26. b — Pointer arithmetic advances by element size.
27. b — Dereferencing is applied after Postfix ++ … *(p++).
28. b — Array decays to pointer but isn’t one itself.
29. b — a decays to pointer automatically.
30. a — new allocates on free store (heap).
31. b — delete releases heap memory.
32. b — Leaked memory remains allocated.
33. a — Access after delete is undefined.
34. a — C++ pairs new with delete.
35. b — Use new int[n] for dynamic arrays.
36. b — delete[] frees entire array.
37. c — new returns pointer to allocated memory.
38. b — Nulling prevents dangling references.
39. b — Heap memory persists until delete.
40. b — Double delete is undefined.
41. b — Memory still allocated but unreachable.
42. a — Non-null pointer indicates success.
43. a — Keep size and capacity separately for growth control.
44. b — References must bind at declaration.
45. b — References permanently alias the same object.
46. c — References act as transparent aliases.
47. b — Use & after type for references.
48. a — Typically compiled as constant pointer under the hood.
49. b — By-reference modifies caller argument directly.
50. b — const T& parameters prevent change.
51. b — Safe only if referent persists.
52. a — References share address with referent.
53. b — Assignment affects the object bound to reference.
54. b — Cleaner syntax; implicit dereference.
55. a — Java-style object references are conceptually similar.
56. b — T*& is reference to pointer; lets function modify pointer itself.
57. a — Reference to pointer allows both modification of referent and pointer.
58. b — Allows resizing by reallocating and rebinding pointer in caller.
59. b — Growable pattern allocates new, copies data, deletes old.
60. c — Capacity = allocation; size = number of used elements.
61. b — Free old memory to avoid leaks.
62. b — Nulling avoids reuse of freed memory.
63. a — Freed memory leaves reference pointing to dead object.
64. b — Loop copies elements via pointer arithmetic.
65. b — Old memory invalid after delete; caller must update pointer.
66. b — Allocate new, copy, delete old.
67. b — vector automates dynamic array resizing and management.
