CISC 3142 — Preliminaries Lecture Test Bank

Based on: Preliminaries lecture notes (Java vs C++, scope & lifetime, value/reference semantics, mutability, parameter transmission, generics, polymorphism, semantic consistency, leveraging functionality, initialization).
1. In Java, a single javac invocation over multiple files typically compiles:
a. Only the file named first
b. Only the currently open file
c. All files listed on the command line
d. Only files that import each other

2. In Java, if a .class is missing, the compiler may:
a. Fail immediately
b. Search for the .java source and compile it
c. Generate bytecode stubs
d. Link a placeholder

3. Java class loading is described as:
a. Static
b. Manual
c. Dynamic
d. Link-time only

4. In C++, compilation of g++ *.cpp is equivalent to:
a. Ignoring wildcard expansion
b. Compiling each .cpp listed individually
c. Linking without compiling
d. Compiling only main.cpp

5. In C++, the compiler by itself:
a. Looks for missing headers automatically
b. Compiles only the specified source file
c. Discovers and compiles related sources
d. Performs dynamic linking

6. The product of separate C++ compilations are:
a. Bytecode files
b. Executable JARs
c. Object files to be linked
d. Shared class caches

7. In Java, CLASSPATH is primarily used to:
a. Find native executables
b. Locate class and package definitions
c. Configure the OS shell
d. Select JDK version

8. The role of #include in C++ is to:
a. Load classes dynamically
b. Insert the contents of a header file into the source
c. Link object files
d. Mark a template

9. A key contrast: Java emphasizes ______ while C++ emphasizes ______.
a. Runtime dynamics; static compilation/linking
b. Static compilation; runtime dynamics
c. Scripting; interpretation
d. Link-time discovery; bytecode erasure

10. In Java, running a program typically means invoking:
a. ./a.out
b. java <ClassName>
c. ld <objects>
d. runjvm <jar>

11. Scope is primarily a ______ concept; lifetime is primarily a ______ concept.
a. Runtime; compile-time
b. Compile-time; runtime
c. OS; hardware
d. Link-time; run-link-time

12. Shadowing refers to:
a. Hiding a variable by another declaration in an inner scope
b. Encrypting identifiers
c. Inlining a function
d. Using super to reveal a field

13. In Java, local variables must:
a. Be auto-initialized to zero
b. Be explicitly initialized before use
c. Be declared final
d. Be declared public

14. C++ adds which scopes beyond Java’s common ones?
a. Only class scope
b. Only method scope
c. Namespace and global scope
d. Package scope only

15. Lifetime categories commonly discussed include:
a. Volatile, nonvolatile, static
b. Static/global, automatic/stack, dynamic/heap
c. Public, private, protected
d. Immediate, deferred, postponed

16. In Java, most objects live where?
a. Stack
b. Registers
c. Heap with GC
d. Global area only

17. In C++, managing heap objects:
a. Is automatic like Java
b. Is discouraged by the language
c. Requires programmer-controlled creation and destruction
d. Is impossible

18. The term 'object' (per Stroustrup) refers to:
a. Only class instances
b. Anything in memory
c. Only arrays
d. Only primitive values

19. An lvalue is best described as:
a. Something with a location assignable to
b. Only literals
c. Only expressions on RHS
d. A compile-time constant

20. Which of the following is NOT an lvalue?
a. x in 'x=3;'
b. y in 'x=y;'
c. 12 in '12=x;'
d. arr[i] in 'arr[i]=0;'

21. Reference semantics means that assignment of a reference variable:
a. Copies the object’s entire state
b. Creates an alias to the same object
c. Makes a deep copy
d. Pins memory

22. Value semantics means that assignment:
a. Copies the value, producing independent state
b. Creates a shared alias
c. Performs type erasure
d. Defers copying

23. Creating an alias requires a level of:
a. Encapsulation
b. Indirection
c. Inheritance
d. Inlining

24. In Java, primitives are assigned with:
a. Reference semantics
b. Value semantics
c. Copy-on-write
d. Move semantics

25. In Java, to copy an object you typically use:
a. A copy constructor or a copy method
b. Assignment on reference variables
c. Serializing and deserializing always
d. The 'copy' keyword

26. A 'workhorse' copy method is useful because:
a. It avoids OOP
b. It centralizes memberwise copying and enforces consistent semantics
c. It disables aliasing
d. It invokes GC manually

27. Which scenario yields an alias, not a copy?
a. new SomeClass(src)
b. dest = src
c. dest.copy(src)
d. new SomeClass(); dest.copy(src)

28. The term 'clone' in these notes broadly refers to:
a. Always deep copy only
b. Any independent copy (via copy constructor or copy method)
c. Shallow aliases only
d. Pointer reassignment

29. Static copy methods are described as:
a. Very OO
b. Symmetric and usable outside the class, but less OO
c. Illegal in Java
d. Equivalent to constructors

30. An immutable class is one whose objects:
a. Cannot be referenced
b. Cannot be modified after initialization
c. Are always singletons
d. Must be final classes

31. A mutable operation typically:
a. Returns a new object and leaves operands unchanged
b. Modifies the receiver in place
c. Copies the class definition
d. Requires deep copy

32. In the immutable example, instance fields are declared ______ to reflect no post-construction change.
a. volatile
b. final
c. static
d. transient

33. Chaining is enabled when an in-place method:
a. Returns void
b. Returns the receiver (this)
c. Returns a boolean
d. Throws an exception

34. A good criterion for immutability is when objects:
a. Are rarely used
b. Are widely aliased and expected to remain unchanged
c. Store only primitive fields
d. Live on stack

35. For containers like ArrayList, in-place methods are appropriate because:
a. Elements are expected to change and aliases should see updates
b. Containers are immutable by design
c. Arrays cannot grow
d. GC prohibits immutability

36. The expression s = s.substring(0, 5); demonstrates:
a. An in-place update
b. Immutable method producing a new object reassigned to the variable
c. Reference erasure
d. Call-by-reference

37. For a mutable class, a method like makeLighter() returning this is helpful for:
a. Encapsulation violation
b. Chaining multiple operations
c. Avoiding initialization
d. Preventing aliasing

38. Call-by-value means:
a. Arguments are copied into parameters
b. Parameters are references to arguments
c. Methods can write directly to caller’s variables
d. No copying occurs

39. Java supports which parameter passing mode(s)?
a. Call-by-value only
b. Call-by-reference only
c. Both by-value and by-reference
d. Copy elision

40. Passing a reference variable by value implies that a method can:
a. Rebind the caller’s reference
b. Modify the referenced object’s state
c. Change the caller’s variable name
d. Capture the caller’s scope

41. The classic swap(int x, int y) in Java fails because:
a. Java lacks integers
b. Parameters are copies; changes don’t propagate to arguments
c. Stack cannot hold two values
d. The JVM forbids temp variables

42. Swapping references in a method (String x, String y):
a. Works and persists
b. Fails for same reason—reassigning parameters doesn’t affect caller
c. Crashes JVM
d. Requires final

43. To swap two values in Java you need:
a. Unchecked casts
b. Indirection (e.g., array + indices or an object wrapper)
c. Native code
d. Reflection

44. Modifying elements of an int[] parameter within a method:
a. Does not persist
b. Persists because the array object is mutated
c. Requires call-by-reference
d. Requires copying the array

45. Attempting to resize an array by reassigning the parameter:
a. Works if array is large enough
b. Fails to affect caller; the parameter rebinding is local
c. Throws by default
d. Invokes GC

46. The correct way to 'resize' an array in Java is to:
a. Mutate its length field
b. Return a new, larger array and assign it to the variable
c. Use delete[]
d. Use type erasure

47. C++ additionally supports parameter modes:
a. By-hash and by-const
b. Call-by-reference and call-by-const-reference
c. Call-by-clone
d. Call-by-gc

48. In C++ call-by-reference, a parameter declared with &:
a. Is a copy
b. Is an alias to the argument
c. Is a pointer only
d. Is illegal for primitives

49. Const-reference parameters are useful because they:
a. Prohibit passing large objects
b. Enable efficient pass of large objects without allowing mutation
c. Force deep copy
d. Disable overloading

50. Generic programming refers to writing algorithms with:
a. Fixed primitive types only
b. Unspecified types supplied later
c. Runtime type creation only
d. Reflection-only code

51. In Java, generics use:
a. Type erasure at compile time
b. Runtime reification of types
c. Multiple inheritance
d. Templates at link time

52. A raw type in Java such as ArrayList without <>:
a. Is illegal
b. Compiles but emits a warning
c. Forces deep copy on add()
d. Erases methods

53. Using generics primarily promotes:
a. Performance only
b. Type safety
c. Dynamic linking
d. Memory compaction

54. C++ generics are implemented via:
a. Annotations
b. Templates and instantiation
c. Reflection
d. Runtime proxies

55. A potential cost of C++ templates mentioned is:
a. Bytecode verification
b. Code bloat
c. VM warmup
d. Mandatory GC

56. Overloading is also called:
a. Dynamic polymorphism
b. Compile-time/static polymorphism
c. Late binding
d. Subtype dispatch

57. Overriding is also called:
a. Static polymorphism
b. Run-time/dynamic polymorphism
c. Macro substitution
d. Template dispatch

58. In overloading, method selection is based on:
a. Return type only
b. Number and types of parameters
c. Local variables
d. Access modifiers

59. Two methods differing only by return type in the same class:
a. Are allowed
b. Cause a compile-time error
c. Select the wider type
d. Select the first declared

60. Overriding requires:
a. Different parameter lists
b. Identical name and type signature
c. Different return type
d. Private access

61. Run-time method resolution chooses based on:
a. Compile-time variable type
b. Runtime type of the receiver object
c. Alphabetical order
d. Most specific return type

62. In Java, polymorphism is:
a. Manual via function pointers
b. Automatic with virtual dispatch
c. Disabled by default
d. Template-only

63. In C++, polymorphism is available:
a. Always, as in Java
b. Only when declared appropriately (e.g., virtual)
c. Never
d. Only for templates

64. Semantic consistency means:
a. Using the same variable names everywhere
b. Logically related concepts behave consistently
c. Inlining all methods
d. Avoiding exceptions

65. Wrapper/delegation methods primarily:
a. Duplicate logic for speed
b. Call a workhorse method to avoid redundancy
c. Eliminate abstraction
d. Prevent reuse

66. Given size() implemented, isEmpty() can:
a. Be independent
b. Delegate: return size() == 0
c. Throw UnsupportedOperationException
d. Use reflection

67. Composing toString() in a class with object fields should:
a. Ignore component toStrings
b. Leverage component toString() results
c. Use identity hash only
d. Return null on error

68. For Rational, an immutable mul can:
a. Mutate receiver directly
b. Create a new Rational and return it
c. Return void
d. Demand deep copy every time

69. Leveraging direction that avoids creating garbage in Java’s Rational example:
a. mul leveraging mulInPlace
b. mulInPlace leveraging mul
c. Both create equal garbage
d. Neither is valid

70. In Java, local variables that are not explicitly initialized:
a. Default to zero
b. Cause a compile-time error when used
c. Are initialized by the VM
d. Become null

71. In Java, instance variables default to:
a. Undefined garbage
b. Zero/false/null
c. Stack values
d. Previous class’s values

72. In C++, if a data member is an actual object (not a pointer), uninitialized use is problematic because:
a. Objects have no 'null' value; you must ensure proper construction
b. The linker adds defaults
c. The VM checks null
d. Templates auto-init

73. In Java subclass constructors, the superclass constructor:
a. Is invoked implicitly only
b. Must be invoked (often explicitly via super) first
c. Is called after field init
d. Cannot be called

Answer Key
1. c — javac compiles all files specified, e.g., javac *.java.
2. b — Java may compile the needed .java if the .class is absent.
3. c — Java class files are loaded dynamically at runtime.
4. b — The compiler compiles each explicitly listed source file; no discovery.
5. b — It only compiles what you give it; #include pulls in headers preprocessor-style.
6. c — C++ produces object files that the linker combines into an executable.
7. b — The compiler/VM uses CLASSPATH to locate classes.
8. b — #include pastes the header’s contents into the translation unit.
9. a — Java: dynamic class loading; C++: static compilation/linking.
10. b — You invoke the JVM with the class containing main.
11. b — Scope is determined by static program structure; lifetime occurs at runtime.
12. a — An inner declaration hides an outer one of the same name.
13. b — The compiler enforces definite assignment before use.
14. c — Notes mention namespace and global scopes in C++.
15. b — Those three durations are emphasized.
16. c — Java relies on heap allocation with garbage collection.
17. c — Programmer manages new/delete; memory management is a major concern.
18. b — Broad definition: anything in memory is an object.
19. a — Informal definition: can appear on left-hand side; has addressable location.
20. c — Literals are not lvalues.
21. b — Assignment of a reference produces an alias.
22. a — Copies by value; changes don’t affect the original.
23. b — Alias arises through indirection via references/pointers.
24. b — Primitives are copied (value semantics).
25. a — Copy constructor or copy method (clone-like) to get independent state.
26. b — Use a single implementation leveraged by constructors/methods.
27. b — Assigning the reference creates an alias.
28. b — Used to indicate producing an independent copy.
29. b — They can live outside; symmetric but less OO.
30. b — Immutable objects don’t change state after construction.
31. b — In-place modification of the receiver.
32. b — Fields of immutable objects are final.
33. b — Returning the receiver supports method chaining.
34. b — Many aliases expect stable values (e.g., String).
35. a — Shared container state should reflect changes.
36. b — New String is produced; variable bound to new object.
37. b — Returning this supports chaining operations.
38. a — The parameter receives a copy of the argument value.
39. a — Java is strictly call-by-value.
40. b — Indirection lets you mutate the object via its reference.
41. b — By-value parameters prevent permanent changes to caller’s vars.
42. b — Rebinding parameters does not change caller’s references.
43. b — Operate on data inside a shared object or array via indirection.
44. b — Mutating the object via the reference persists after return.
45. b — Rebinding the parameter doesn’t change caller’s reference.
46. b — Create a new array, return it, and rebind the caller’s reference.
47. b — C++ offers reference and const reference parameters.
48. b — References create an alias to the argument.
49. b — Avoid copying while preventing modification.
50. b — Types are deferred; algorithms are type-agnostic.
51. a — Type information is erased; checks are compile-time.
52. b — Permitted but unsafe; the compiler warns.
53. b — Compile-time type checking of container element types.
54. b — Templates instantiated at compile time.
55. b — Multiple instantiations can increase code size.
56. b — Resolved by the compiler based on parameter types/count.
57. b — Resolved at runtime based on receiver’s runtime type.
58. b — Return type does not participate in overload resolution.
59. b — Return type cannot disambiguate an overload.
60. b — Same name and signature; subclass method replaces superclass.
61. b — Dispatch follows the actual object’s class at runtime.
62. b — JVM provides virtual method dispatch automatically.
63. b — Requires explicit features; not universal by default.
64. b — Keep related operations consistent (e.g., + with +=).
65. b — They delegate to a shared implementation.
66. b — Leverage size to define isEmpty once.
67. b — Build from components’ toString outputs.
68. b — Immutable ops produce new objects.
69. a — mul creates a copy then uses in-place logic, avoiding extra temporary garbage.
70. b — Definite assignment is enforced for locals.
71. b — They receive type-specific default values.
72. a — No null sentinel; must initialize properly via constructors.
73. b — super(...) must be first executable statement when needed.

