CISC 3142 — Java Rational Lab Test Bank

Source: Lab 2.3 — A Rational Number Class in Java (ignore other exercises).
1. Which constructor should throw a RationalException?
a. Rational(int)
b. Rational()
c. Rational(int,int) when denominator is 0
d. Rational(Rational) when argument is null

2. The 1‑argument constructor Rational(int num) should create:
a. num/0
b. num/1
c. 1/num
d. 0/num

3. The default constructor Rational() should initialize to:
a. 1/1
b. 0/0
c. 0/1
d. 1/0

4. The copy constructor Rational(Rational r) should:
a. Alias the same object
b. Copy num and denom from r
c. Only copy denom
d. Normalize only if r is negative

5. After any constructor completes, the object should be:
a. Possibly unreduced
b. Always reduced to lowest terms
c. Always negative
d. Always with denom == 0

6. Normalization uses which helper?
a. lcm
b. gcd
c. sqrt
d. hash

7. Which call pattern best leverages constructor chaining with this(...) ?
a. Each constructor re‑implements normalization
b. The 0‑arg delegates to the 1-arg and the 1‑arg delegate to the 2‑arg (num,denom)
c. The 2‑arg delegates to 1‑arg
d. None should delegate

8. The add method signature and semantics are:
a. Rational add(Rational r): returns a new Rational
b. void add(Rational r): mutates this
c. int add(Rational r): returns gcd
d. Rational add(Rational r): returns this

9. sub can be implemented by leveraging:
a. mul only
b. div only
c. add and negate of the second operand
d. inverse then add

10. div can be implemented by leveraging:
a. mul and inverse of the second operand
b. negate then add
c. gcd only
d. normalize only

11. The in-place variant addInPlace should:
a. Return void
b. Return Rational and modify this
c. Throw by default
d. Allocate two temporaries and not modify this

12. Which approach minimizes garbage when both immutable and in‑place versions exist?
a. Implement add using addInPlace on a copy
b. Implement addInPlace using add
c. Implement both separately
d. Avoid normalization

13. Which pair is intentionally missing in-place versions per lab?
a. negateInPlace and inverseInPlace
b. addInPlace and mulInPlace
c. subInPlace and divInPlace
d. compareTo and equals

14. compareTo should return:
a. true/false
b. -1, 0, or 1
c. a reduced Rational
d. the gcd

15. equals(Rational r) should ideally leverage:
a. compareTo
b. hashCode
c. toString
d. gcd alone

16. A toString for an integer‑valued Rational should output:
a. "num/1"
b. "1/num"
c. "num"
d. "0/0"

17. Which is true about immutability in this lab’s design?
a. The class is fully immutable
b. Both immutable and mutable operations coexist
c. Only in‑place operations exist
d. Only immutable operations exist

18. RationalException is used primarily to signal:
a. Arithmetic overflow
b. Null pointer dereference
c. Creation with denominator == 0
d. Normalization is done

Answer Key
1. c — Per the spec, a denominator of 0 must throw RationalException.
2. b — A single‑int constructor represents the integer value num/1.
3. c — Rational() initializes the number to 0/1.
4. b — Copy constructor copies numerator and denominator from r.
5. b — All constructors should normalize (reduce to lowest terms).
6. b — Use gcd to divide numerator and denominator to lowest terms.
7. b — Use this(...) to centralize initialization/normalization in the 2‑arg constructor.
8. a — Immutable add returns a new Rational result.
9. c — Subtraction = addition with negated second operand.
10. a — Division uses reciprocal of the divisor then multiply.
11. b — In-place ops modify the receiver and typically return this for chaining.
12. a — Copy then call in‑place leverages one implementation and reduces extra temporaries.
13. a — Lab specifies immutable negate() and inverse() only.
14. b — compareTo follows the standard contract: -1, 0, or 1.
15. a — Leverage compareTo for consistent equality semantics.
16. c — If denom == 1, print just the numerator.
17. b — Both immutable (e.g., add) and in‑place (addInPlace) are required.
18. c — Denominator 0 should throw RationalException.
19. 
