CISC 3142 — Separate Compilation Test Bank

1. Separate compilation primarily enables:
a. Combining unrelated languages
b. Compiling parts of a program independently
c. Interpreting C++ at runtime
d. Automatic discovery of sources

2. One reason to use separate compilation is:
a. To ensure a single giant source file
b. To recompile only changed parts
c. To disable type checking
d. To avoid using headers

3. Reusable modules are facilitated by:
a. Copy/paste into main.cpp
b. Separate compilation and linking
c. Only templates
d. Only inheritance

4. Large-team development benefits because:
a. Everyone edits the same file
b. Each developer can compile their part independently
c. Linker performs code merges
d. Types are ignored

5. Translation from source to executable consists of:
a. Compilation only
b. Linking only
c. Compilation then linking
d. Preprocessing only

6. A partially compiled unit that isn't a full program is:
a. An executable
b. A bytecode
c. An object file
d. A header

7. During separate compilation, functions defined elsewhere are called:
a. Private
b. Static
c. External
d. Inline

8. Linking produces:
a. A header
b. An object file
c. An executable
d. Preprocessed text

9. The compiler’s output contains machine code plus:
a. Only comments
b. Definitions and references metadata
c. Linker scripts
d. Type tables for runtime

10. A 'reference' recorded in an object file is:
a. A full function body
b. A placeholder where a name is used
c. A macro
d. A header line

11. A 'definition' recorded in an object file is:
a. A usage site
b. A name without storage
c. A symbol that supplies code or storage
d. A macro expansion

12. If the linker finds no definition matching a recorded reference:
a. It creates one
b. It warns and continues
c. It errors: undefined reference/symbol
d. It compiles more files

13. Multiple definitions of the same symbol across objects cause:
a. Optimization
b. Duplicate symbol error
c. Silent shadowing
d. Automatic renaming

14. To re-link with a precompiled object:
a. Recompile headers
b. Specify the .o files to the linker
c. Delete the .o files
d. Edit the executable

15. An executable is formed by:
a. Concatenating headers
b. Merging object files and resolving references
c. Inlining templates only
d. Preprocessing again

16. A function compiled in one source and called in another is:
a. Internal-only
b. Invalid C++
c. External linkage scenario
d. Header-only

17. The compiler needs to know a function’s signature before a call so that:
a. Linker can run
b. It can do type checking and codegen
c. Headers can be deleted
d. Macros expand properly

18. A function 'declaration' (prototype) provides:
a. The body and storage
b. Only the existence and signature
c. Linker script
d. Inline only

19. A function 'definition' provides:
a. Only the name
b. Only default arguments
c. The function body (implementation)
d. A header include

20. To call functions defined in other TUs (translation units), callers must see:
a. A copy of the function body
b. A function declaration (prototype)
c. The .o file
d. An executable

21. If a declaration is missing where a function is used:
a. A compiler error occirs
b. Linker fixes it
c. It runs slower
d. It auto-includes headers

22. Placing declarations in header files allows:
a. Copying code between .cpp files
b. All users to include the same declarations
c. Run-time macro expansion
d. Avoiding prototypes

23. The linker not using type info means that:
a. Type mismatches could slip through if compiler were bypassed
b. Compilation is unnecessary
c. Headers are optional
d. Names are ignored

24. For variables, a 'definition' allocates:
a. No storage
b. Storage
c. A prototype only
d. A header guard

25. To share a global across TUs (translation units) you typically:
a. Define in a header
b. Define in multiple .cpp
c. Declare extern in headers; define once in a .cpp
d. Use macros only

26. #include works by:
a. Linking a library
b. Textually pasting the included file’s contents
c. Generating bytecode
d. Calling the OS loader

27. The preprocessor is:
a. A full C++ compiler
b. A text substitution system
c. A linker
d. A runtime interpreter

28. Including headers into .cpp files allows the compiler to:
a. Link
b. Type-check references to external functions
c. Run macros at runtime
d. Avoid prototypes

29. Including the header inside the module’s .cpp is recommended to:
a. Speed up linking
b. Ensure declarations and definitions stay in sync
c. Avoid #include in users
d. Disable inlining

30. Headers should generally avoid:
a. Function declarations
b. Include guards
c. using namespace ...
d. Type declarations

31. Angle-bracket includes like <vector> mean:
a. Local file
b. Standard/system header search path
c. Network fetch
d. Template instantiation

32. Double-quote includes like "array_utils.h" mean:
a. Only system path
b. First search local directory, then system paths
c. Never found
d. Precompiled only

33. The result of running 'g++ -E file.cpp' is:
a. Executable
b. Object file
c. Preprocessed source on stdout
d. Disassembled code

34. A typical non-class header structure includes:
a. Function bodies and globals
b. #ifndef/#define guard, macros/constants, function prototypes
c. Main only
d. Only templates

35. Include guards prevent:
a. Compilation
b. Multiple textual inclusion effects
c. Linking
d. Inlining

36. A correct guard pattern is:
a. #define H
 ... 
#endif
b. #ifndef NAME
#define NAME
 ... 
#endif
c. #ifguard
 ... 
#endif
d. #pragma include

37. Implementation (.cpp) files should:
a. Always include their matching header first
b. Avoid includes
c. Include only system headers
d. Contain only macros

38. Placing 'using namespace std;' is recommended:
a. Inside headers
b. Inside implementation files only (not headers)
c. In both
d. Never

39. Headers normally contain:
a. Executable code
b. Declarations and constants
c. Linker commands
d. Only comments

40. Users of a module should include:
a. The .cpp file
b. Only the executable
c. The module’s header
d. The object file

41. Defining the same function body in multiple .cpp files causes:
a. Inline expansion
b. ODR (one definition rule)/linker multiple definition errors
c. Optimization
d. Nothing

42. Placing declarations for external functions in a shared header ensures:
a. Runtime loading
b. Consistent prototypes for all users
c. Faster I/O
d. Type erasure

43. Headers should avoid changing includer semantics because:
a. They compile independently
b. They are guests in includer’s file
c. They run at runtime
d. They link separately

44. A .h filename usually reflects:
a. Compiler version
b. OS type
c. The functionality provided
d. Random choice

45. By default, 'g++ a.cpp b.cpp' will:
a. Only compile
b. Only link
c. Compile each, then link all into an executable
d. Run preprocessor only

46. The option '-c' makes g++:
a. Create an executable
b. Stop after producing object files
c. Run the preprocessor only
d. Run static analyzer

47. Supplying prebuilt .o files to g++ along with sources:
a. Is illegal
b. Lets g++ link them with newly compiled objects
c. Forces recompilation
d. Deletes objects

48. Header (.h) files are not compiled alone because:
a. They have syntax errors
b. They contain declarations, not full programs
c. Linker can’t find them
d. They must be main.cpp

49. The temporary preprocessed text contains:
a. Only macros
b. Source plus expanded includes/macros
c. Object code
d. Executable image

50. The linker reports 'no main' when:
a. The header is missing
b. No object provides a definition of main
c. A macro fails
d. Type info is missing

51. To examine preprocessor output you can use:
a. g++ -E file.cpp
b. g++ -S file.cpp
c. g++ -g file.cpp
d. g++ -O3 file.cpp

52. During the default build, g++ deletes:
a. The source files
b. All temporary and object files after linking
c. The executable
d. User headers

Answer Key
1. b — It allows compiling portions separately and later linking into a full program.
2. b — It reduces rebuild time by recompiling only modified components.
3. b — Modules compiled separately can be linked into many programs.
4. b — Developers can compile modules independently.
5. c — Two steps: compilation and linking.
6. c — Compiler outputs an object (.o) file.
7. c — Definitions in other translation units are external functions/variables.
8. c — The linker outputs a complete executable.
9. b — Object files contain code, definitions, and unresolved references.
10. b — References mark places to be filled in by the linker.
11. c — Definitions provide code/data to satisfy references.
12. c — Missing definitions cause undefined reference errors.
13. b — The linker rejects duplicate symbol definitions.
14. b — Linker can take existing .o plus new ones.
15. b — Linker resolves and merges objects.
16. c — External linkage is the model in separate compilation.
17. b — Declarations enable type checking and correct code generation.
18. b — Prototypes announce the function’s type/signature.
19. c — The definition is the implementation.
20. b — Declaration suffices for compilation; definition is linked later.
21. a — Compiler must see declaration before use.
22. b — Headers share declarations consistently.
23. a — Compiler catches type issues; linker can’t validate types.
24. b — Definitions allocate storage for variables.
25. c — One definition, many extern declarations via header.
26. b — Preprocessor pastes included text into the source.
27. b — It manipulates text per directives like #include/#define.
28. b — The declarations become visible for compilation.
29. b — Same header ensures prototype matches the definition.
30. c — Avoid polluting the includer’s namespace.
31. b — Angle brackets search system include paths.
32. b — Quotes search local dir first, then system paths.
33. c — Option -E runs only the preprocessor.
34. b — Use include guards and put declarations/prototypes.
35. b — They avoid reprocessing header contents multiple times.
36. b — Use #ifndef NAME/#define NAME ... #endif.
37. a — Including own header keeps prototype in sync and catches missing includes.
38. b — Avoid in headers; OK in .cpp.
39. b — Headers present declarations and constants.
40. c — Include the header; link with the object/library.
41. b — Violates One Definition Rule; duplicates at link time.
42. b — Everyone sees identical declarations.
43. b — They should not pollute or alter client files (e.g., via 'using').
44. c — Name the header after its content (e.g., array_utils.h).
45. c — Default pipeline: preprocess+compile each, then link.
46. b — Stops after compilation; outputs .o files; no link.
47. b — g++ links existing and new objects together.
48. b — Headers supply declarations for compilation of .cpp files.
49. b — Preprocessor expands includes and macros into one text.
50. b — Executable requires a definition of main.
51. a — -E stops after preprocessing and prints to stdout.
52. b — By default, temp and .o are removed after link (unless options override).
