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The structure of hard, hyperspherical fluids in dimension one, two, three, four, and five has been
examined by calculating the pair correlation function using a Monte Carlo simulation. The pair
correlation functions match known results in one, two, and three dimensions. The contact value of
the pair correlation functions in all the different dimensions agrees well with the theory of Song,
Mason, and StrattfJ. Phys. Chem.93, 6916s1989dg. The decrease in ordering as the dimension is
increased is readily apparent in the structure of the pair correlation function. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1848091g

I. INTRODUCTION

The structure of simple fluids is a problem of long stand-
ing interest. It is well known1 that in the gaseous state there
is little order and that particles are distributed at random
whereas in the solid state the particles pack into long-ranged
ordered crystals. The liquid state is characterized by an in-
termediate short-ranged order. The nature of this order is
revealed by the pair correlation functionGsRd.

This function measures the relative number of particle
pairs at a distanceR from the center of a reference particle. If
N particles are contained in a region of sizeV sthe volume in
D dimensionsd, then the average number density% is N/V.
Let the center of one of the particles be fixed at the origin of
the appropriate coordinate system. Then the probability of
finding a second particle in a regiondR, keeping the one
particle fixed at the origin, is given by

%GsRddR. s1d

Here,%GsRd behaves as a local density because ifGsRd
is zero there are no particles indR whereas ifGsRd is 1 the
number of particles indR is determined by the average den-
sity. The pair correlation function contains information about
the system’s density fluctuations. In a solid the particles are
confined, except for small oscillations around the lattice
sites. The change in the shape of the pair correlation function
mirrors the underlying particle rearrangements. Indeed, the
appearance of split peaks inGsRd has been used as a signa-
ture of crystallization.

In two dimensions, for example, the close-packed lattice
will be hexagonal.2,3 If r0 is the lattice spacing, which is
determined by the density, there will be six nearest neighbors
at a separation ofr0 from the reference particle, six second
neighbors at a separation ofÎ3r0, and six third nearest neigh-
bors at a separation of 2r0. Therefore, in the solid phaseGsRd
will have three sharp peaks centered at these locations. As

the density is lowered the particles will become less local-
ized. Then the peak heights are lowered and the peak widths
are broadened. Since the difference betweenÎ3 and 2 is
relatively small, the second and third neighbor peaks will
begin to merge together as the phase transition is ap-
proached. Above the transition point, in the liquid phase, the
distinction between the second and third peak will com-
pletely disappear. In the gas phase the second neighbor peak
displayed by the liquid phase will be gone. The first neighbor
peak reflects the order that remains in the system; this order
is caused only by the shape of the hard hypersphere poten-
tial. Thus, changes in the structure of the pair correlation
function directly mirror the changes in the particle ordering
as a system alters its state.

The pair correlation function can be calculated for any
spatial dimension. As the dimension is increased, particles
will be less hindered in their movement and therefore higher
densities are required for localization. This localization be-
havior has been previously observed in analytic calculations
of GsRd in one dimension by Salsburg, Zwanzig, and
Kirkwood4 even though there is no crystallization phase in
one-dimensional hard rod systems. Localization in two di-
mensions has already been described above. Alder and
Wainwright5 and Wood6 observed a fluid-solid transition in
two-dimensional hard disks by following the variation of
pressure as a function of density along an isotherm. Alder
and Wainwright5 used molecular dynamicssMDd methods
whereas Wood6 employed Monte CarlosMCd techniques. In
three dimensions a phase transition was found for hard
spheres by Alder and Wainwright7 with MD and confirmed
by Wood and Jacobson8 with MC. More recently, four- and
five-dimensional MD simulations of hard hyperspheres by
Michels and Trappeniers9 have reported a fluid-solid transi-
tion. The transition densitysin standard reduced unitsd
increases10 from %<0.88 in two dimensions, to%<0.95 in
three dimensions, to%<1.0 in four dimensions, and then to
%<1.19 in five dimensions.adElectronic mail: marvin.bishop@manhattan.edu
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This paper presents a systematic examination of the
variation ofGsRd as the dimension is increased from one to
five. Information aboutGsRd allows one to calculate the
equation of state and provides idealized models for testing
the universality of theories in different dimensions.

II. METHOD

The number of particles, the number density of the state,
and the dimensionality of the system of interest are prese-
lected input parameters. These determine the sideL of the
system simulation hyperbox:

L = SN

%
D1/D

. s2d

The hyperspheres are initially arranged in a lattice and are
moved using the standard Metropolis Monte Carlo
technique11 to form an equilibrated fluid. However, for the
case of hard hyperspheres the usual energy check becomes a
simple test for overlaps since the pair potential ofD dimen-
sional hyperspheres with diameters separated by theD di-
mensional distanceR is given by

UsRd = H` R, s

0 Rù s
J . s3d

The computer simulation employs the standard system
of reduced units in which the hypersphere diameter is set to
be 1.0. It proceeds by attempting to move, in turn, each of
the particles in the simulation hyperbox. One attempted
move for each of theN hyperspheres is called a pass. Each
particle is first moved a different random amount in each of
the D directions within a test hyperbox. Thus, a new trial
position is randomly selected from a hyperbox surrounding
the current location of the center of mass of the hypersphere.
If the attempted displacement is too large, the chance of an
overlap with another particle will be great and too many
moves will be rejected whereas if the displacement is too
small, the simulation will not adequately sample phase
space. If the new position is not accepted, the hypersphere
remains at its current location. The acceptance ratio, the
number of accepted moves divided by the number of total
moves, is monitored. This ratio as well as the maximum
magnitude of an allowed displacement for each density and
dimension is listed in Tables I–III. The values of the maxi-
mum allowed displacement have been determined with short

TABLE I. Selected results in one, two, and three dimensions.

D r PreEq PostEq
Maximum

displacement
Acceptance

ratio Gs1d Theorya

1 0.20 8000 20 000 2.60 0.75 1.243±0.275 1.249
0.40 8000 30 000 1.00 0.73 1.655±0.072 1.665
0.60 8000 50 000 0.60 0.66 2.487±0.075 2.498
0.80 8000 50 000 0.10 0.83 4.909±0.591 4.995

2 0.20 10 000 20 000 1.00 0.69 1.304±0.205 1.31
0.40 10 000 20 000 0.30 0.72 1.832±0.040 1.80
0.60 10 000 20 000 0.10 0.77 2.808±0.147 2.70
0.80 10 000 20 000 0.08 0.61 5.059±0.689 4.62

3 0.20 5000 20 000 0.50 0.68 1.324±0.169 1.339
0.40 5000 20 000 0.20 0.65 1.817±0.068 1.811
0.60 5000 20 000 0.10 0.63 2.615±0.194 2.561
0.80 5000 20 000 0.05 0.62 4.011±0.601 3.971

aIn one dimension the theory result is Eq.s7d, in two dimensions it is the PY results of Ref. 23, and in three
dimensions it is the values reported by Barker and HendersonsRef. 24d.

TABLE II. Four-dimensional results.

r PreEq PostEq
Maximum

displacement
Acceptance

ratio Gs1d LMa Gs1d

0.05 3000 10 000 1.00 0.81 1.064±0.082
0.10 3000 10 000 0.90 0.67 1.134±0.071
0.20 3000 10 000 0.30 0.70 1.291±0.041 1.292
0.30 3000 10 000 0.20 0.66 1.473±0.031 1.476
0.40 3000 10 000 0.10 0.73 1.690±0.049 1.692
0.50 3000 10 000 0.10 0.64 1.943±0.054 1.947
0.60 3000 10 000 0.08 0.61 2.244±0.128 2.251
0.70 3000 10 000 0.05 0.65 2.604±0.223 2.617
0.80 3000 10 000 0.05 0.57 3.034±0.361 3.060
0.90 3000 10 000 0.05 0.48 3.552±0.612 3.590

aReference 10.
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runs. The move may or may not be accepted but is always
counted in the averaging. Standard periodic boundary
conditions12 are employed in testing for overlaps and in
maintaining a constant number of particles in the simulation
hyperbox.

The inefficiencies of a “direct” algorithm which exam-
ines all possibleOsN2d pair overlaps are greatly reduced by
partitioning13 the simulation hyperbox into subcells. After a
new trial position is generated for the selected particle, a
determination is made to detect whether or not the particle
has moved out of its original cell. If it has, the possibility of
overlaps with other particles in the new cell must be consid-
ered. If the selected particle is still in its original cell one
needs to examine possible overlaps with particles in that cell
and, depending upon the magnitude of the move, the neigh-
boring cells as well. The cell dimensions are selected so that
on average four particles are in each cell. Timing experi-
ments indicate that the run times are decreased by approxi-
mately a factor of 6 over the times of a “direct” algorithm.

Since the successive positions of the hyperspheres are
not independent, it takes many passes to converge from the
initial state to an equilibrated one. Hence, some number of
passes must be discarded; we refer to these discarded passes
as the preequilibrium stagesPreEq in Tables I–IIId. Typically,
on the order of 103–104 passes are needed in order to reach
the equilibrated state. Then an additional ten to fifty thousand
passes are generatedsPostEq in Tables I–IIId for analysis.

Even after the asymptotic regime is attained there is still
serial correlation between each step in the generation pro-
cess. Here, we have handled this problem by two methods.
First, we sampleGsRd only at a save interval of ten passes.
This procedure allows some of the serial correlation to dis-
sipate from the previously sampled value ofGsRd. Second,
and considerably more effectively, statistically independent
sets of simulations are carried out. These individual results
are then averaged together.

The MC method is easy to implement using the small
Web computing14,15 sSWCd framework software. TheSWC

framework is a Master-Worker Multiple-Instruction,
Multiple-Data sMIMD d parallel programming model imple-
mented in Java. While theSWC system is intended to be used
as Web-based collaborative software, it can also be utilized

to run a multithreaded process on a symmetric multiprocess-
ing sSMPd machine or to run distributed, independent pro-
cesses on separate machines without the necessity for addi-
tional programming. All of these platforms were employed in
the current simulations. Detailed comparisons of a C11 se-
rial version of the code and theSWC parallel Java version
have been previously reported upon.16 It was found that all
the calculated quantities agreed within the precision of the
statistical error. Moreover, theSWC parallel version was con-
siderably more efficient in both CPU and wall-clock time.

An order parameter17 O, appropriate for a generalized
closest packed lattice, was monitored to decide when the
system had reached equilibrium:

O =

o
j=1

D

o
i=1

N

cosf4pXis jd%1/Dg

DN
. s4d

Here,Xis jd is the j th position component of theith hy-
persphere. The order parameter has a value of 1 for a com-
pletely ordered lattice and randomly oscillates about 0 when
the system has equilibrated. At this point all preequilibrium
passes were discarded and the accumulators for the estima-
tors of interest were reinitialized. The simulation was contin-
ued until the statistical error of the result was satisfactory.

GsRd is calculated on a grid with spacingDR by making
a histogram of the number of pair separations as a function
of separation distance. This count is normalized by dividing
by two factors; one is the differential volume occupied by the
pairs,VDfsR+DRdD−RDg, whereVD is related to the surface
area of aD dimensional hypersphere,18

VD =
pD/2

Gs1 + D/2d
, s5d

and G is the standard Gamma function. The other factor is
the actual number density of pairs 0.5N sN−1d /V or
0.5% sN−1d.

TABLE III. Five-dimensional results.

r PreEq PostEq
Maximum

displacement
Acceptance

ratio Gs1d LMa Gs1d PYb,c Gs1d

0.05 1000 10 000 0.90 0.79 1.055±0.081 1.055
0.10 1000 10 000 0.80 0.64 1.114±0.064 1.113
0.20 1000 10 000 0.30 0.64 1.241±0.020 1.241 1.233
0.30 1000 10 000 0.18 0.63 1.379±0.042 1.363
0.40 1000 10 000 0.10 0.68 1.536±0.041 1.537 1.502
0.50 1000 10 000 0.09 0.62 1.708±0.042 1.654
0.60 1000 10 000 0.07 0.61 1.899±0.092 1.906 1.818
0.70 1000 10 000 0.05 0.63 2.112±0.131 1.997
0.80 1000 10 000 0.04 0.63 2.352±0.216 2.368 2.192
0.90 2000 10 000 0.03 0.64 2.619±0.324 2.405

aReference 10.
bReference 28.
cReference 29.
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III. RESULTS

A. Comparison with known results in one, two,
and three dimensions

The one-, two-, and three-dimensional studies have been
used mainly to check the methods and computer codes since
these results are well known in the literature. The major new
findings are for four and five dimensions. In all the simula-
tions we have used the shuffled, nested Weyl random number
generator.19,20 Empirical tests have shown that this generator
gives reasonable behavior in parallel MC calculations.20

In one dimension Salsburg, Zwanzig, and Kirkwood4 de-
rived the exact expression for the pair correlation function in
the thermodynamic limitsN→`d. Their equation predicts a
contact value ofGsRd:

Gs1d =
1

1 −%
. s6d

Bishop and Berne21 extended the result of Salsburg,
Zwanzig, and Kirkwood4 to the case of periodic boundary
conditions and obtained anN-dependent correction toGs1d,

Gs1d =
1 − 1/N

1 −%
. s7d

The one-dimensional hard rod system has been studied
for a variety of densities from%=0.10 to 0.8 whereN
=1000. The contact value of the pair correlation function has
been determined by fitting a least-squares line to the first five
data points for which the separationR is larger than 1.00.
The equation of this line is then evaluated at the pointR
=1.00 to find the contact value. The error bar on the contract
value has been determined by the error bar on the fitted co-
efficients of the straight line. This reported error also con-
tains a statistical component in the calculation ofGsRd and is
an upper bound to the actual error. The results for a selection
of the densities examined are listed in Table I. When the MC
values are compared to the exact values predicted by Eq.s7d,
one sees excellent agreement.

In two dimensions the MC simulations have been
checked by comparison with the earlier work of Chae, Ree,
and Ree22 which used 90 or 208 particles. Here we have
employed systems with 625 particles. Figure 1 presents a

comparison ofGsRd determined by our parallel MC simula-
tion with their data at densities of 0.462, 0.577, and 0.693.
The agreement is excellent. We have also performed two-
dimensional MC calculations for a range of densities of%
from 0.10 to 0.80.

TheGs1d values are compared to a numerical solution of
the Percus–YevicksPYd equation of Lado23 in Table I. Note
that the PY solution has been reported with only three sig-
nificant figures. The agreement between the MC simulations
and the PY solution is excellent until a density of about 0.6.
Of course it is well known that the PY equation is not ad-
equate at higher densities.

In three dimensions our MC pair correlation functions
for N=1000 have been verified by comparing with the earlier
MC data of Barker and Henderson24 who used systems of
108 hard spheres. Figure 2 presents a comparison for three
typical densities: 0.2, 0.6, and 0.8. Fine agreement is ob-
tained. Our values ofGs1d are compared to the Barker and
Henderson findings in Table I. The earlier work provides
further validation of the current simulation approach.

B. Results in four and five dimensions

Our four-dimensional Monte Carlo calculations em-
ployed 4096 particles. Typical order parameters are pre-
sented for densities ofr=0.50 and 0.80 in Fig. 3. This figure
indicates that the lattice structure is erased after about 100

FIG. 1. Comparison of MC two-dimensional data to the results of Chae,
Ree, and Ree.r=0.462….MC h; r=0.577---MCn; r=0.693—MCs.

FIG. 2. Comparison of MC three-dimensional data to the results of Barker
and Henderson.r=0.20….MC h; r=0.60---MCn; r=0.80—MCs.

FIG. 3. The order parameter atr=0.50….andr=0.80—in four dimensions.
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passes per save interval, even at the highest density. The
GsRd values for three different densities,r=0.10, 0.50, and
0.80, are presented in Fig. 4. Note the increased ordering as
the density is increased. A measure of the statistical error in
the average values ofGsRd at a density of 0.80 is shown in
Fig. 5. This standard deviation corresponds to the scatter in
the values ofGsRd obtained by averaging ten independent
distributed simulations. These errors are extremely small.

The pair correlation function at contact can be obtained
from the MD equation of state as reported by Luban and
Michels.10 The compressibility factorZ is defined as

Z =
Pb

%
, s8d

whereb is 1/kBT skB is Boltzmann’s constant andT is the
absolute temperatured, and P is the pressure. In the case of
hard hyperspheresZ is independent of the temperature. The
equation of state,Z as a function of%, in all dimensions25 is
related toGs1d by

Z = 1 +%B2Gs1d. s9d

Here,B2 is the second virial coefficient.B2 has the value of
p2/4 and 4p2/15 in four and five dimensions,26 respectively.

TheGsRd MC values at contact are contained in Table II.
The agreement with the MD calculations of Luban and

Michels10 is excellent. They used 648 particles and continued
their simulations for at least 3.23105 collisions after equili-
bration. They report an accuracy of about one part in 103.
The equation of state data of Luban and Michels was con-
firmed by Gonzalez-Melchor, Alejandre, and Lopez de
Haro27 who also performed MD calculations with 648 par-
ticles as part of a study of mixtures of hyperspheres in four
and five dimensions.

In five dimensionsN was equal to 7776 andGsRd for
three typical densitiessr=0.10, 0.50, and 0.80d are presented
in Fig. 6. Now hardly any ordering is visible, even at the
highest densities. The statistical accuracy ofGsRd in five
dimensions is similar to that observed in four dimensions.16

The contact pair correlation function results are contained in
Table III. We find excellent agreement with the MD simula-
tions of Luban and Michels10 who employed 512 particles
and report errors of about one part in 103. Their results were
also confirmed by Gonzalez-Melchor, Alejandre, and Lopez
de Haro,27 who used 512 and 3888 particles. The pair corre-
lation function at contact has been obtained in closed form
from an exact solution of the Percus–Yevick approximation
in five dimensions by Freasier and Isbister28 and by
Leutheusser.29 Two different expressions have been pub-
lished. Freasier and Isbister28 have

h = p2r s10d

with

Gs1d = − Fa

2
+ b + gG . s11d

Here,

a =

− FS2h +
h2

20
DD + 3S1 +

3h

20
DG

d
, s12d

b =
Sh

2
+

h2

30
DD +

h

4

d
, s13d

FIG. 4. The pair correlation function in four dimensions forr=0.10…., r
=0.50----, andr=0.80—.

FIG. 5. The standard deviation ofGsRd in four dimensions atr=0.80.

FIG. 6. The pair correlation function in five dimensions forr=0.10…., r
=0.50----, andr=0.80—.
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g =
S− 2 +

h

5
DD + 1

2S1 −
h

60
D , s14d

d = 1 −
7h

60
+

h2

600
, s15d

D =

− S1 +
h

20
+

7h2

1200
D + S1 −

h

10
DS1 +

3h

10
+

h2

600
D1/2

hS1 −
h

60
D2 .

s16d

Leutheusser29 gives the packing fraction as

h =
p2r

60
s17d

with

Gs1d =
− f1 − 33h − 87h2 − 6h3 − s1 + 18h + 6h2d3/2g

60hs1 − hd3 .

s18d

Both approaches give the same numerical values which
are reported in Table III. When we compare the two-
dimensional PY results in Table I with those in five dimen-
sions, Table III, we notice that the PY approximation is valid
at higher densities for higher dimensions. Moreover, the PY
approximation is in excellent agreement at low to moderate
densities with both the MD calculations of Luban and
Michels10 and the present MC simulations.

A comparison of the behaviors of the pair correlation
functions in dimension one to five shows that the ordering of
the particles is less pronounced, at a given density, as the
dimension is increased. As illustrated in Fig. 7, this effect is
particularly noticeable at higher dimensions. The well-
defined second peak in one dimension indicates a nearly
“solidlike” ordering which is not surprising given the con-
finement in one dimension. Note that there is still a well-

defined second peak in two dimensions whereas that peak
substantially decreases as the dimension increases from three
to four and then to five.

Gonzalez-Melchor, Alejandre, and Lopez de Haro27 have
published MDGsRd data in the solid phase for binary mix-
tures of hard hyperspheres in four and five dimensions. Their
self-pair-correlation functions reveal the structure expected
for the solid phase. Song, Mason, and Stratt30 have also con-
sidered the pair correlation function at contact for arbitrary
dimension and density. They have derived a theoretical equa-
tion, using mean field theory, forGs1d based on the
Carnahan–Starling equation of state:31

Gs1d =
1 − ah

s1 − hdD , s19d

whereh is the packing fraction

h =
B2r

2D−1 s20d

and

a = D − 2D−1B3

B2
2 . s21d

Here, B3 is the third virial coefficient. Figure 8 compares
their predictions for 1/Gs1d vs h with all of our MC simu-
lation data. They have previously compared their predictions
with Luban and Michels10 and the closed form of PY. As
would be anticipated our MC results confirm this previous
investigation.

IV. CONCLUSION

A parallel Monte Carlo Java program has been devel-
oped which allows us to efficiently compute the pair corre-
lation in any dimension. We obtain excellent agreement with
previously published results in one to three dimensions and
report new findings for four and five dimensions. The de-
crease in ordering as the dimension increases is readily ap-
parent. This is a result of the hyperspheres being able to
easily avoid each other at higher dimensions. The MC data
also confirm the theory of Song, Mason, and Stratt.

FIG. 7. A comparison ofGsRd at dimension one,1; two,----; three,….; four,
s; and five,—atr=0.80.

FIG. 8. Comparison of the MC data to the theory of Song, Mason, and Stratt
sSMSd sRef. 30d. MC in dimension one, solid square; two, solid circle; three,
h; four, n; and five,s. Theory—.
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We plan to extend these calculations to even higher di-
mensions and to investigate the equation of state of hard
hyperspheres in detail.
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