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The structure of hyperspherical fluids in various dimensions
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The structure of hard, hyperspherical fluids in dimension one, two, three, four, and five has been
examined by calculating the pair correlation function using a Monte Carlo simulation. The pair
correlation functions match known results in one, two, and three dimensions. The contact value of
the pair correlation functions in all the different dimensions agrees well with the theory of Song,
Mason, and Straft). Phys. Chem93, 6916(1989]. The decrease in ordering as the dimension is
increased is readily apparent in the structure of the pair correlation functidZ00® American
Institute of Physic§ DOI: 10.1063/1.1848091

I. INTRODUCTION the density is lowered the particles will become less local-

ized. Then the peak heights are lowered and the peak widths

are broadened. Since the difference betwg8nand 2 is

is little order and that particles are distributed at rando relajuvely small, the second and third nelghbor.peak.s will
egin to merge together as the phase transition is ap-

whereas in the solid state the particles pack into long-range . oo L
ordered crystals. The liquid stite is chgracterized t?y anginProa(DhEd' Above the transition point, in the liquid phase, the

termediate short-ranged order. The nature of this order i9|st|nct|o'n between the second and third peak .WIH com-
revealed by the pair correlation functi@(R). pletely disappear. In the gas phase the second neighbor peak

This function measures the relative number of particlediSPlayed by the liquid phase will be gone. The first neighbor

pairs at a distancR from the center of a reference particle. If P&aK réflects the order that remains in the system; this order
N particles are contained in a region of sizéthe volume in IS caused only by the shape of the hard hypersphere poten-
D dimensiong then the average number densityis N/V. tial. Thus, changes in the structure of the pair correlation
Let the center of one of the particles be fixed at the origin ofunction directly mirror the changes in the particle ordering
the appropriate coordinate system. Then the probability of'S & System alters its state.

finding a second particle in a regiaR, keeping the one The pair correlation function can be calculated for any
particle fixed at the origin, is given by spatial dimension. As the dimension is increased, particles

will be less hindered in their movement and therefore higher
2G(R)dR. 1) densities are required for localization. This localization be-

Here,0G(R) behaves as a local density becausé(iR) havior has been previously observed in analytic calculations
is zero there are no particles iR whereas ifG(R) is 1 the 0of G(R) in one dimension by Salsburg, Zwanzig, and
number of particles iR is determined by the average den- Kirkwood® even though there is no crystallization phase in
sity. The pair correlation function contains information aboutone-dimensional hard rod systems. Localization in two di-
the system’s density fluctuations. In a solid the particles arénensions has already been described above. Alder and
confined, except for small oscillations around the latticeWainwrighf and Wood observed a fluid-solid transition in
sites. The change in the shape of the pair correlation functiotwo-dimensional hard disks by following the variation of
mirrors the underlying particle rearrangements. Indeed, theressure as a function of density along an isotherm. Alder
appearance of split peaks @R) has been used as a signa- and Wainwright used molecular dynamicVD) methods
ture of crystallization. whereas Woofdemployed Monte CarlgMC) techniques. In

In two dimensions, for example, the close-packed latticethree dimensions a phase transition was found for hard
will be hexagonaf:® If r, is the lattice spacing, which is spheres by Alder and Wainwrighwith MD and confirmed
determined by the density, there will be six nearest neighborsy Wood and JacobsBmith MC. More recently, four- and
at a separation of, from the reference particle, six second five-dimensional MD simulations of hard hyperspheres by
neighbors at a separation 08ro, and six third nearest neigh- Michels and Trappenietave reported a fluid-solid transi-
bors at a separation of  Therefore, in the solid phas®&R)  tion. The transition density(in standard reduced unjts
will have three sharp peaks centered at these locations. Agcrease® from 0~0.88 in two dimensions, to ~0.95 in
three dimensions, t@ = 1.0 in four dimensions, and then to
dElectronic mail: marvin.bishop@manhattan.edu 0=~1.19 in five dimensions.

The structure of simple fluids is a problem of long stand-
ing interest. It is well knowhthat in the gaseous state there
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TABLE |. Selected results in one, two, and three dimensions.

Maximum Acceptance
D p PreEq PostEq displacement ratio G(1) Theory*
1 0.20 8000 20 000 2.60 0.75 1.243+0.275 1.249
0.40 8000 30 000 1.00 0.73 1.655+0.072 1.665
0.60 8000 50 000 0.60 0.66 2.487+0.075 2.498
0.80 8000 50 000 0.10 0.83 4.909+0.591 4.995
2 0.20 10 000 20 000 1.00 0.69 1.304+0.205 1.31
0.40 10 000 20 000 0.30 0.72 1.832+0.040 1.80
0.60 10 000 20 000 0.10 0.77 2.808+0.147 2.70
0.80 10 000 20 000 0.08 0.61 5.059+0.689 4.62
3 0.20 5000 20 000 0.50 0.68 1.324+0.169 1.339
0.40 5000 20 000 0.20 0.65 1.817+0.068 1.811
0.60 5000 20000 0.10 0.63 2.615+0.194 2.561
0.80 5000 20000 0.05 0.62 4.011+0.601 3.971

4n one dimension the theory result is ), in two dimensions it is the PY results of Ref. 23, and in three
dimensions it is the values reported by Barker and Hende({Reh 24.

This paper presents a systematic examination of the o R<o
variation of G(R) as the dimension is increased fromone to ~ Y(RI=) o . 3
five. Information aboutG(R) allows one to calculate the
equation of state and provides idealized models for testing The computer simulation employs the standard system
the universality of theories in different dimensions. of reduced units in which the hypersphere diameter is set to
be 1.0. It proceeds by attempting to move, in turn, each of
the particles in the simulation hyperbox. One attempted
Il. METHOD move for each of thé\ hyperspheres is called a pass. Each
particle is first moved a different random amount in each of
The number of particles, the number density of the statethe D directions within a test hyperbox. Thus, a new trial
and the dimensionality of the system of interest are preseposition is randomly selected from a hyperbox surrounding
lected input parameters. These determine the kidd the  the current location of the center of mass of the hypersphere.

system simulation hyperbox: If the attempted displacement is too large, the chance of an
N 1/D overlap with another particle will be great and too many
L= <E> (2 moves will be rejected whereas if the displacement is too

small, the simulation will not adequately sample phase
The hyperspheres are initially arranged in a lattice and aréPace. If the new position is not accepted, the hypersphere
moved using the standard Metropolis Monte Carloremains at its current location. The acceptance ratio, the
techniqué® to form an equilibrated fluid. However, for the number of accepted moves divided by the number of total
case of hard hyperspheres the usual energy check becomegiaves, is monitored. This ratio as well as the maximum
simple test for overlaps since the pair potentiaDoflimen-  magnitude of an allowed displacement for each density and
sional hyperspheres with diameterseparated by th® di-  dimension is listed in Tables I-lll. The values of the maxi-
mensional distancR is given by mum allowed displacement have been determined with short

TABLE II. Four-dimensional results.

Maximum Acceptance
p PreEq PostEq displacement ratio G(1) LM? G(1)

0.05 3000 10 000 1.00 0.81 1.064+0.082

0.10 3000 10 000 0.90 0.67 1.134+0.071

0.20 3000 10 000 0.30 0.70 1.291+0.041 1.292
0.30 3000 10 000 0.20 0.66 1.473+0.031 1.476
0.40 3000 10 000 0.10 0.73 1.690+0.049 1.692
0.50 3000 10 000 0.10 0.64 1.943+0.054 1.947
0.60 3000 10 000 0.08 0.61 2.244+0.128 2.251
0.70 3000 10 000 0.05 0.65 2.604+0.223 2.617
0.80 3000 10 000 0.05 0.57 3.034+0.361 3.060
0.90 3000 10 000 0.05 0.48 3.552+0.612 3.590

“Reference 10.
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TABLE IIl. Five-dimensional results.

Maximum Acceptance
p PreEq PostEq  displacement ratio G(1) LM?G(1) PYPC G(1)
0.05 1000 10 000 0.90 0.79 1.055+0.081 1.055
0.10 1000 10 000 0.80 0.64 1.114+0.064 1.113
0.20 1000 10 000 0.30 0.64 1.241+0.020 1.241 1.233
0.30 1000 10 000 0.18 0.63 1.379+0.042 1.363
0.40 1000 10 000 0.10 0.68 1.536+0.041 1.537 1.502
0.50 1000 10 000 0.09 0.62 1.708+0.042 1.654
0.60 1000 10 000 0.07 0.61 1.899+0.092 1.906 1.818
0.70 1000 10 000 0.05 0.63 2.112+0.131 1.997
0.80 1000 10 000 0.04 0.63 2.352+0.216 2.368 2.192
0.90 2000 10 000 0.03 0.64 2.619+0.324 2.405

“Reference 10.
PReference 28.
‘Reference 29.

runs. The move may or may not be accepted but is alway® run a multithreaded process on a symmetric multiprocess-
counted in the averaging. Standard periodic boundaryng (SMP) machine or to run distributed, independent pro-
conditions? are employed in testing for overlaps and in cesses on separate machines without the necessity for addi-
maintaining a constant number of particles in the simulatiortional programming. All of these platforms were employed in
hyperbox. the current simulations. Detailed comparisons of-a+se-

The inefficiencies of a “direct” algorithm which exam- rial version of the code and thewc parallel Java version
ines all possibleéD(N?) pair overlaps are greatly reduced by have been previously reported up]c9rit was found that all
partitioning™® the simulation hyperbox into subcells. After a the calculated quantities agreed within the precision of the
new trial position is generated for the selected particle, astatistical error. Moreover, thgwc parallel version was con-
determination is made to detect whether or not the particlsiderably more efficient in both CPU and wall-clock time.
has moved out of its original cell. If it has, the possibility of An order parametéf O, appropriate for a generalized
overlaps with other particles in the new cell must be considclosest packed lattice, was monitored to decide when the
ered. If the selected particle is still in its original cell one system had reached equilibrium:
needs to examine possible overlaps with particles in that cell
and, depending upon the magnitude of the move, the neigh-

boring cells as well. The cell dimensions are selected so that D N

on average four particles are in each cell. Timing experi- > > cog4mXi(j)eP]

ments indicate that the run times are decreased by approxi- o= j=1i=1 4)
mately a factor of 6 over the times of a “direct” algorithm. DN

Since the successive positions of the hyperspheres are N . . .
not independent, it takes many passes to converge from the Here, X(j) is the jth position component of thih hy-
initial state to an equilibrated one. Hence, some number opersphere. The orqler parameter has a \(alue of 1 for a com-
passes must be discarded; we refer to these discarded pasQ!eestely ordered Iattlc_e_ and random_ly os_(:lllates about_(_) vyhen
as the preequilibrium stag®reEq in Tables I-I)L Typically, the system has_ equilibrated. At this point all preethbnum
on the order of 19-10* passes are needed in order to reacHP@SSes were discarded and the accumulators for the estima-

the equilibrated state. Then an additional ten to fifty thousandP'S Of intérest were reinitialized. The simulation was contin-
passes are generatéRlostEq in Tables I—I)lfor analysis. ued until the statistical error of the result was satisfactory.

Even after the asymptotic regime is attained there is still (R is calculated on a grid with spacintR by making
serial correlation between each step in the generation prcfFl h|stogra_m of _the numbe_r of pair _separatlo.ns as a f_ur_lc.non
cess. Here, we have handled this problem by two method f separation d|staqce. ThI.S count is normalized by dividing
First, we sample5(R) only at a save interval of ten passes. y two factors; one is the dlfferentlf’:ll volume occupied by the
This procedure allows some of the serial correlation to disPairs, Vol (R+AR)°~R®], whereVy, is related to the surface

sipate from the previously sampled value ®(R). Second, ~2&réa of aD dimensional hypersphef8,

and considerably more effectively, statistically independent

sets of simulations are carried out. These individual results

are then averaged together. Voz T
The MC method is easy to implement using the small b~ r1+D/2)’

Web computing®® (swc) framework software. Theswc

framework is a Master-Worker Multiple-Instruction,

Multiple-Data (MIMD ) parallel programming model imple- andI is the standard Gamma function. The other factor is

mented in Java. While thewc system is intended to be used the actual number density of pairs BLSN-1)/V or

as Web-based collaborative software, it can also be utilize@.5¢0 (N-1).

D/2

(5)
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FIG. 1. Comparison of MC two-dimensional data to the results of ChaeFIG. 2. Comparison of MC three-dimensional data to the results of Barker
Ree, and Reg=0.462...MC [J; p=0.577---MCA; p=0.693—MCO. and Hendersorp=0.20....MC [J; p=0.60---MCA; p=0.80—MCO.
Ill. RESULTS comparison ofG(R) determined by our parallel MC simula-

tion with their data at densities of 0.462, 0.577, and 0.693.
The agreement is excellent. We have also performed two-
dimensional MC calculations for a range of densitiespof
The one-, two-, and three-dimensional studies have beefiom 0.10 to 0.80.
used mainly to check the methods and computer codes since TheG(1) values are compared to a numerical solution of
these results are well known in the literature. The major newthe Percus—YevickPY) equation of Lad®® in Table I. Note
findings are for four and five dimensions. In all the simula-that the PY solution has been reported with only three sig-
tions we have used the shuffled, nested Weyl random numbeiificant figures. The agreement between the MC simulations
generatof”?° Empirical tests have shown that this generatorand the PY solution is excellent until a density of about 0.6.
gives reasonable behavior in parallel MC calculatiths. Of course it is well known that the PY equation is not ad-
In one dimension Salsburg, Zwanzig, and Kirkwd oe- equate at higher densities.
rived the exact expression for the pair correlation function in  In three dimensions our MC pair correlation functions
the thermodynamic limifN— ). Their equation predicts a for N=1000 have been verified by comparing with the earlier

A. Comparison with known results in one, two,
and three dimensions

contact value of5(R): MC data of Barker and Hendersdnwho used systems of
1 108 hard spheres. Figure 2 presents a comparison for three
G(l):n. (6) typical densities: 0.2, 0.6, and 0.8. Fine agreement is ob-

tained. Our values 06(1) are compared to the Barker and

Bishop and Berrfé extended the result of Salsburg, Henderson findings in Table I. The earlier work provides
Zwanzig, and Kirkwood to the case of periodic boundary further validation of the current simulation approach.
conditions and obtained ad-dependent correction 6(1),

1-1IN B. Results in four and five dimensions

()

1-¢ Our four-dimensional Monte Carlo calculations em-

The one-dimensional hard rod system has been studigfoyed 4096 particles. Typical order parameters are pre-
for a variety of densities fromp=0.10 to 0.8 whereN sented for densities ¢f=0.50 and 0.80 in Fig. 3. This figure
=1000. The contact value of the pair correlation function hadndicates that the lattice structure is erased after about 100

been determined by fitting a least-squares line to the first five

G(1) =

data points for which the separatidtis larger than 1.00. . .

The equation of this line is then evaluated at the pdint

=1.00 to find the contact value. The error bar on the contract 0.8 F 3
value has been determined by the error bar on the fitted co- ]

efficients of the straight line. This reported error also con- g 0.6 .
tains a statistical component in the calculatiorGgR) and is g :

an upper bound to the actual error. The results for a selection % 04 ]
of the densities examined are listed in Table I. When the MC g 02 b

values are compared to the exact values predicted by7Eq.
one sees excellent agreement.

) . . . 0 P S ——
In two dimensions the MC simulations have been L L N R B

PR L L
checked by comparison with the earlier work of Chae, Ree, 0 20 . 40/5 | l60 | 80 100
. . ! nterva
and Re& which used 90 or 208 particles. Here we have aesesave
employed systems with 625 particles. Figure 1 presents BIG. 3. The order parameter at0.50....andp=0.80—in four dimensions.
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FIG. 4. The pair correlation function in four dimensions fer0.10..., p  FIG. 6. The pair correlation function in five dimensions f970.10..., p
=0.50----, andp=0.80—. =0.50----, andp=0.80—.

passes per save interval, even at the highest density. THdichels'®is excellent. They used 648 particles and continued
G(R) values for three different densities=0.10, 0.50, and their simulations for at least 3:210° collisions after equili-
0.80, are presented in Fig. 4. Note the increased ordering 4¥ation. They report an accuracy of about one part if 10
the density is increased. A measure of the statistical error if € equation of state data of Luban and Michels was con-
the average values @(R) at a density of 0.80 is shown in f|rmeg by Gonzalez-Melchor, Alejandre, and Lopez de
Fig. 5. This standard deviation corresponds to the scatter ifiard”” who also performed MD calculations with 648 par-
the values ofG(R) obtained by averaging ten independenttides as part of a study of mixtures of hyperspheres in four
distributed simulations. These errors are extremely small. and five dimensions.

The pair correlation function at contact can be obtained [N five dimensionsN was equal to 7776 anG(R) for
from the MD equation of state as reported by Luban andhree typical densitie§p=0.10, 0.50, and 0.8Gre presented

highest densities. The statistical accuracyG(R) in five

= PB (8) dimensions is similar to that observed in four dimensiths.
o' The contact pair correlation function results are contained in
Table Ill. We find excellent agreement with the MD simula-
tions of Luban and Michetd who employed 512 particles
and report errors of about one part in*1Their results were
equation of stateZ as a function o, in all dimension® is also Cogﬂrmed by Gonzalez-Melchor, Alejandre, anq Lopez
related toG(1) by de. Haro; vyho used 512 and 3888 partlc!es. The pair corre-
lation function at contact has been obtained in closed form
Z=1+0B,G(1). (99 from an exact solution of the Percus—Yevick approximation
in five dimensions by Freasier and Isbiéterand by
LeutheusseT’ Two different expressions have been pub-
lished. Freasier and Ishist&have

z

where 8 is 1/kgT (kg is Boltzmann’s constant and is the
absolute temperatureand P is the pressure. In the case of
hard hypersphere2 is independent of the temperature. The

Here, B, is the second virial coefficienB, has the value of
214 and 472/15 in four and five dimensiorfS respectively.
The G(R) MC values at contact are contained in Table II.

The agreement with the MD calculations of Luban and n=12p (10)
4D i
0.0025 [T with

T A ] —-_| &

& 0.002 [ . G(1) = [2 +pB+ 7’]- (11
G r 1

- r 1

S 0.0015 [ ] Here,

% . 1

a L 2

S 0001 B <2n+l>A+3<1+—")

@ i 20 20

g : a= , (12)
& 0.0005 d

n i

Ll
8= 2 30 4 (13
FIG. 5. The standard deviation &(R) in four dimensions ap=0.80. B d '
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FIG. 8. Comparison of the MC data to the theory of Song, Mason, and Stratt
(SMY9) (Ref. 30. MC in dimension one, solid square; two, solid circle; three,
[; four, A; and five,O. Theory—.

FIG. 7. A comparison o66(R) at dimension onet; two,----; three,...; four,
O; and five,—atp=0.80.

” defined second peak in two dimensions whereas that peak
(- 2+ g)A +1 substantially decreases as the dimension increases from three
y=—, (14) to four and then to five.
2<1 _ ﬂ) Gonzalez-Melchor, Alejandre, and Lopez de Hatwave
60 published MDG(R) data in the solid phase for binary mix-
tures of hard hyperspheres in four and five dimensions. Their
_ 7 self-pair-correlation functions reveal the structure expected
d=1 ~60 600’ (15 for the solid phase. Song, Mason, and StPatave also con-
sidered the pair correlation function at contact for arbitrary
n TP 7 3y P \H2 dimension and density. They have derived a theoretical equa-
- (1 + >0 + E)) + (1 - E)(l + 10 + %) tion, using mean field theory, folG(1) based on the
A= a , Carnahan-Starling equation of stdte:
7
1-2) -
”( 60 6= —2L, (19
(1-7)
(16)
where 7 is the packing fraction
Leutheussér gives the packing fraction as 7 P g
_Bop
_™p a7 "= o1 (20
7”60
and
with
— P _ oD-123
G(l)__[1_3377_87772_6773_(1+1877+ 67]2)3/2] a=D-2 B% (21)
B 607(1-17)° ' . . . - .
19 Here, B; is the third virial coefficient. Figure 8 compares

their predictions for 16(1) vs » with all of our MC simu-

Both approaches give the same numerical values whickation data. They have previously compared their predictions
are reported in Table Ill. When we compare the two-With Luban and Michel® and the closed form of PY. As
dimensional PY results in Table | with those in five dimen-Would be anticipated our MC results confirm this previous
sions, Table 11, we notice that the PY approximation is valid nvestigation.
at higher densities for higher dimensions. Moreover, the PY
apprt_»_(imati(_)n is in excellent agreemer_1t at low to moderatqv_ CONCLUSION
densities with both the MD calculations of Luban and
Michels'® and the present MC simulations. A parallel Monte Carlo Java program has been devel-

A comparison of the behaviors of the pair correlationoped which allows us to efficiently compute the pair corre-
functions in dimension one to five shows that the ordering ofation in any dimension. We obtain excellent agreement with
the particles is less pronounced, at a given density, as thgreviously published results in one to three dimensions and
dimension is increased. As illustrated in Fig. 7, this effect isreport new findings for four and five dimensions. The de-
particularly noticeable at higher dimensions. The well-crease in ordering as the dimension increases is readily ap-
defined second peak in one dimension indicates a nearlygarent. This is a result of the hyperspheres being able to
“solidlike” ordering which is not surprising given the con- easily avoid each other at higher dimensions. The MC data
finement in one dimension. Note that there is still a well-also confirm the theory of Song, Mason, and Stratt.
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We plan to extend these calculations to even higher di-gdon, Oxford, 1998
mensions and to investigate the equation of state of hargB- Quentrec and C. Brot, J. Comput. Phys, 430 (1973.

hyperspheres in detail.
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