Efficient Deterministic and Non-
Deterministic Pseudorandom
Number Generation

Jie Li, Jianliang Zheng, Paula Whitlock

Outline

" |Introduction
" MabD1 Algorithm

A Building Block: MARC-bb

Data Structure

Key Scheduling

Initialization of Internal State

Deterministic Pseudorandom Generation
Non-Deterministic Pseudorandom Generation
" Security Analysis

" Statistical Test

" Performance Test

" Summary

Introduction

* MabD family of cryptographic and pseudorandom number
generators:

MaDO - pseudorandom number generator
— MaD1 - produces both cryptographic and pseudorandom streams

— Mad2/3 - produces most secure cryptographic cipher stream

* MabD family evolved out of an attempt to improve the RC4 stream
cipher called MARC (modified ARC - open source version of RC4)

* MARC was designed to resist well-known security attacks on RC4

* Mad1 is discussed here. It sacrifices some security features to
provide high speed generation. It can be used both as a
deterministic or non-deterministic generator.

MARC-bb: MARC as a Building Block

MARC is a byte-oriented PRNG, not very fast.
MARC-bb is a building block for advanced PRNGs.

MARC-bb reduce the iterations in the key scheduling
algorithm from 576 used in MARC to 320.

It has the same state transition function as MARC

MARC-bb has an avalanche effect property comparable to
hash functions. It satisfies the strict avalanche criterion.

MARC-bb Key Scheduling Algorithm (KSA)

addition (+) and increment (++) operations i
are performed modulo 256; except variable r,
which 1s a 16-bit unsignhed integer, all other##
varlables are 8-bit unsigned integers. it
% means modulo; A means bitwise XOR.

Key Scheduling Algorithm (KSA)
for 1 from 0 to 255

S[i] = 1
endfor
i=20
§i=00
k =0
for r from 0 to 319
j =3 + S[1] + key[r % keylength]
k = k N j
left_rotate(S[1i], S[]J], S[k])
1++

endfor

MARC-bb Pseudorandom Generation Algorithm(PRGA)

Pseudorandom Generation Algorithm (PRGA)
(J and k are from KSA)

=gk

while GeneratingOutput
1++
JeEd g o i
k = k N j
swap(S[1], S[]])
m= S[]J] + S[k]
n = S[1] + S[]]
output S[m]
output S[n]
output S[m A j]
output S[n A k]

endwhile

MARC-bb: Chi-Square Statistic Test

" Flip one input bit each time and compare the initialized state s’ with the
initialized state s before flipping.

" Compute the Hamming distance between s’ and s = number of output bits
changed.

" Compute the chi-square value
v (0,-E,)

x' =)

m=0

E

m

Om = the actual number of times that exactly m output bits are flipped in

N experiments
Em = the expected number of times that m output bits are flipped for a

binomial distribution
L = the bit length of the output

" Compare with the critical value (C.V.) at a = 0.01.

" If x2 >CV, reject HO: observed distribution matches a binomial
distribution; Otherwise, accept HO .

MARC-bb: Chi-Square Statistic Test (Cont.)

Input Output CV
Algorithm size size d.o.f. X2 (a=.0 '0 1 Reject H 0?
(bytes) | (bytes) ’
MD5 16 128 49.527 168.233 No
SHA1 20 160 66.401 204.633 No
SHA2 32 256 77.629 311.674 No
32 256 79.46 311.674 No
MARC-bb 64
256* 2047 238.36 2199.06 No
RC4 256 2047 4.56 X10% 2199.06 Yes
RC4 (+64 iterations) 256* 2047 1.87 510" 2199.06 Yes
RC4 (+256 iterations) 256* 2047 244.29 2199.06 No

N = 100352 experiments
" MARC-bb KSA has a similar avalanche effect as standard hash algorithms.
" More shuffling helps to improve the avalanche effect of RC4 KSA.

MaD1 - An Ultrafast High Quality PRNG

Seed / Key
e ﬂ —————— | 1 KT
|
: MARC-bb KSA @ : - e
|
| ., I y
| [J [] [}
| saesiik B Initiali-
| | S ~zation
L J : | C
opy an uffle MARC-bb PRGA
Copy and Shuffl | @ : h
@ - ____ | _____ | e
ml State d
o Sa,Sh,a,b, c d |
u
MaD1 Model li —
Mon-deterministic
component n Pseudo
| g [random
Deterministic Pseudorandom Generation genera_
Algorithm tion

| _

Qutput 9

MaD1 - Algorithm Design 1

= Data Structure (next slide)

" Key scheduling

Key size: up to 64 bytes (512 bits)
MARC-bb KSA

" |nitialization

state S (the first 256 bytes of Sa) is initialized using MARC-bb KSA

The second 256 bytes of Sa and 512 bytes of Sb are initialized using copy-
and-shuffle process.

Four integers a, b, ¢, and d are initialized using MARC-bb PRGA.

" Pseudorandom generation

Use 64-bit operations -- All state tables (Sa and Sb) and output sequence
buffer T are cast into and used as 64-bit integer arrays.

Each generation round consists of 32 iterations.

In each iteration, two 64-bit integers are generated and one 64-bit integer
element of state table S is updated.

10

MaD1 - Algorithm Design (cont.)

Data Structure

512 bytes 512 bytes 1024 bytes
Sa Sb T
]
S
[
Sw
64-bit integers: | a | b
.
hd N

internal state

output sequence buffer

1

MaD1 - Algorithm Design 2

Initialization: copy-and-shuffle function

State table S and index i, j, and k are initialized
using MARC-bb KSA.

addition (+) and increment (++) operations are
performed modulo 256

For- R om0 255

i++

e, s Sl e

k = k A j

left_rotate(S[1], S[]J], S[k])
Endfor

Note: left_rotate(s[i], s[]J], s[k]) means
tmp=s[1], s[i]=s[]J], s[J]l=s[k], s[k]=tmp

12

MaD1 - Algorithm Design 3

Pseudorandom Generation Algorithm

additions are performed modulo 0x10000000000000000;

& means bitwise AND; | means bitwise OR;
<< means bitwise logical left shift; i
>> means bitwise logical right shift. i

declare a byte array of size 64
byte x[64]

cast the byte array 1into 64-bit integer array
x[64] => x64[8]

HH

18

MaD1 - Algorithm Design 4

Pseudorandom Generation Algorithm (cont.)

populate array x (through x64)
M = Ox7878787878787878
N = Ox04050607000160203

x64[0] = (a & M) | N
x64[1] = (b & M) | N
x64[2] = (¢c & M) | N
x64[3] = (d & M) | N
x64[4] = ((a >> 1) & M) | N
x64[5] = ((b > 1) & M) | N
x64[6] = ((c >> 1) & M) | N
X644 206 0d =) RN N

MaD1 - Algorithm Design 5

Pseudorandom Generation Algorithm (cont.)

output and update the internal state

for i from 0 to 63

— a<<l1

s A

+ Sw[x[1]]

+ Sw[x[1]7MOX78]

+"Sald]

+ Shif1]
23] .= 0cyla +d)
TE2is1 = d (b +he)
SwixEL T =nai i b

endfor

H
Doy T e pa R

18

MaD1 - Algorithm Design 6

" Variable x is a byte array used as indices to access state tables.
" Swix[i]] and Sw[x[i]*0x78] introduce pseudorandom indirect access.
" Indexiguarantees all state elements get involved in each generation round.

= Swix[i]], Sw[x[i]*0x78], Sali], and Sb[i] are distinct and different from any of the
four state table integers used in the previous or next three iterations.

" |n each iteration, two 64-bit integers are generated; Integers a, b, ¢, d, and a
“random” element in Sw are updated.

?

(Swx[i]~0x78]

T (T2, ’I[EiJril]]
|

16

MaD1 - Period

" MaD1 has an 8448 bit integer-oriented internal state.

" Transition of the integer-oriented state follows a pseudorandom
mapping.

" The average period = 24224,

17

MaD1 - Security Analysis

Attacks:

Correlation attacks, weak keys, related key attacks, etc
Time-Memory Tradeoff Attacks

Guessing Attacks
Algebraic Attacks
Distinguishing Attacks
Differential Attacks

Countermeasures in MaD1

Large internal state

State initialization with great avalanche property

Indirect access of state element and special index control
Non-linear pseudorandom generation

Pseudorandom mapping state transition

18

NDPRNG: Non-Deterministic Pseudorandom Number Generation

" Non-deterministic random number generation is preferred in
some applications.
— key/seed generation
— gambling and lottery

" Existing solutions

— TRNGs:
* expensive
* relatively slow
* not generally available.

— PRNGs with entropy inputs:
* often using cryptographic primitives
* complicated algorithm and slow speed

19

NDPRNG - Design Goal and Approach

" [ntroduce non-deterministic feature into deterministic generator
without affecting other features.

" Focus on non-deterministic feature only.
— leaving randomness, security, etc. to deterministic algorithm

" Maintain the availability of the generators.
— using generally available entropies only

" Minimize the impact on performance.
— using as less entropy inputs as possible

— not using special entropy accumulation, evaluation, processing, and
distribution methods

20

NDPRNG - Entropy Selection

" Commonly used entropies

user interactions with the machine

hard drive latency

disk timings and interrupt timings

CPU cycle count and jiffies count

number of threads/processes

memory/disk utilization and other system information

" OQur choice: CPU cycle count

available on most processors

accessible from any program (not only from the kernel)
changing at a relatively high rate

low cost

difficult to manipulate or predict

24

MaD1-Non-Deterministic Pseudorandom Generation Algorithm

Non-Deterministic Pseudorandom Generation Algorithm

#
e

(D7 =D, D,

O) T, "V eath

FeadCPU: Gyele €OLNT
= readCCC();

preprocess the cycle count
=e + (<< 7);
= e +. (e <<'19);
= e+ (e << 37);

use the preprocessed value to modify a, b, c, and d

/\ L]
4

@D

4

=

I
(L (F § (@pelel

N
N e
N e;

continue with the deterministic PRGA

22

NDPRNG - Overall Effects of Algorithm Modification

Property

Randomness
Security
Period
Performance
Availability
Ease of use
Cost
Non-deterministic feature

Impact

Positive
Positive
Positive
Negative, but trivial

Same

Same

Same
Added

23

MaD1 - Statistical Test

(b)
Batt p ¢ NoP Failures
attery arameters o d nd dend ndend
SmallCrush Built-in 15 0 0 0 0
Crush 235 random 144 0 0 0 0
numbers
BigCrush 238 random 160 0 0 0 0
numbers
Rabbit 32x109 bits 40 0 0 0 0
Alphabit 32x109 bits 17 0 0 0 0
BlockAlphabit |32x109 bits 102 0] 0] 0] 0]

24

MaD1 - Performance Test

Pseudorandom Number Generation Speed (cycle/byte)

Sequence size (KB)

Generator

1 5 10 100 1000 10000
RC4 9.53 7.67 7.09 6.98 7.04 7.04
HC-128 55.21 13.27 7.96 3.58 3.15 3.11
MaD1 (32-bit) 47.97 12.01

3

MaD1 - Summary

a new word-based pseudorandom number generator

a huge internal state of 8448 bits, long period

secure against various known attacks

Very good statistical properties - passes all TESTUO1 tests
ultrafast

Non-deterministic feature added with little cost

26

	Slide 1
	Outline
	Introduction
	MARC-bb: MARC as a Building Block
	MARC-bb Key Scheduling Algorithm (KSA)
	MARC-bb Pseudorandom Generation Algorithm(PRGA)
	MARC-bb: Chi-Square Statistic Test
	MARC-bb: Chi-Square Statistic Test (Cont.)
	MaD1 – An Ultrafast High Quality PRNG
	MaD1 – Algorithm Design
	MaD1 – Algorithm Design
	MaD1 – Algorithm Design
	MaD1 – Algorithm Design
	MaD1 – Algorithm Design
	MaD1 – Algorithm Design
	MaD1 – Algorithm Design
	MaD1 - Period
	MaD1 – Security Analysis
	NDPRNG: Non-Deterministic Pseudorandom Number Generation
	NDPRNG - Design Goal and Approach
	NDPRNG - Entropy Selection
	MaD1-Non-Deterministic Pseudorandom Generation Algorithm
	NDPRNG – Overall Effects of Algorithm Modification
	MaD1 - Statistical Test
	MaD1 – Performance Test
	MaD1 - Summary

