
Jie Li, Jianliang Zheng, Paula Whitlock

Efficient Deterministic and Non-
Deterministic Pseudorandom

Number Generation

2

Outline

 Introduction
 MaD1 Algorithm

● A Building Block: MARC-bb
● Data Structure
● Key Scheduling
● Initialization of Internal State
● Deterministic Pseudorandom Generation
● Non-Deterministic Pseudorandom Generation

 Security Analysis
 Statistical Test
 Performance Test
 Summary

3

Introduction

● MaD family of cryptographic and pseudorandom number
generators:

 - MaD0 – pseudorandom number generator

– MaD1 – produces both cryptographic and pseudorandom streams

– Mad2/3 – produces most secure cryptographic cipher stream

● MaD family evolved out of an attempt to improve the RC4 stream
cipher called MARC (modified ARC – open source version of RC4)

● MARC was designed to resist well-known security attacks on RC4
● Mad1 is discussed here. It sacrifices some security features to

provide high speed generation. It can be used both as a
deterministic or non-deterministic generator.

4

MARC-bb: MARC as a Building Block

 MARC is a byte-oriented PRNG, not very fast.

 MARC-bb is a building block for advanced PRNGs.

 MARC-bb reduce the iterations in the key scheduling
algorithm from 576 used in MARC to 320.

 It has the same state transition function as MARC

 MARC-bb has an avalanche effect property comparable to
hash functions. It satisfies the strict avalanche criterion.

5

MARC-bb Key Scheduling Algorithm (KSA)

addition (+) and increment (++) operations
are performed modulo 256; except variable r,
which is a 16-bit unsigned integer, all other##
variables are 8-bit unsigned integers.
% means modulo; ^ means bitwise XOR.

Key Scheduling Algorithm (KSA)
for i from 0 to 255

S[i] = i
endfor
i = 0
j = 0
k = 0
for r from 0 to 319

j = j + S[i] + key[r % keylength]
k = k ^ j
left_rotate(S[i], S[j], S[k])
i++

endfor

6

MARC-bb Pseudorandom Generation Algorithm(PRGA)

Pseudorandom Generation Algorithm (PRGA)
(j and k are from KSA)

i = j + k
while GeneratingOutput
i++
j = j + S[i]
k = k ^ j
swap(S[i], S[j])
m = S[j] + S[k]
n = S[i] + S[j]
output S[m]
output S[n]
output S[m ^ j]
output S[n ^ k]

endwhile

7

MARC-bb: Chi-Square Statistic Test

 Flip one input bit each time and compare the initialized state s’ with the
initialized state s before flipping.

 Compute the Hamming distance between s’ and s → number of output bits
changed.

 Compute the chi-square value

Om = the actual number of times that exactly m output bits are flipped in
N experiments

Em = the expected number of times that m output bits are flipped for a
binomial distribution

L = the bit length of the output

 Compare with the critical value (C.V.) at α = 0.01.
 If χ2 > C.V., reject H0: observed distribution matches a binomial

distribution; Otherwise, accept H0 .

L

m m

mm

E

EO

0

2
2)(

8

MARC-bb: Chi-Square Statistic Test (Cont.)

Algorithm
Input
size

(bytes)

Output
size

(bytes)
d.o.f. χ2 C.V.

 (α=0.01 Reject H 0?

MD5

64

16 128 49.527 168.233 No

SHA1 20 160 66.401 204.633 No

SHA2 32 256 77.629 311.674 No

MARC-bb
32 256 79.46 311.674 No

256* 2047 238.36 2199.06 No

RC4 256* 2047 2199.06 Yes

RC4 (+64 iterations) 256* 2047 2199.06 Yes

RC4 (+256 iterations) 256* 2047 244.29 2199.06 No

161087.1

551056.4

N = 100352 experiments
 MARC-bb KSA has a similar avalanche effect as standard hash algorithms.
 More shuffling helps to improve the avalanche effect of RC4 KSA.

9

MaD1 – An Ultrafast High Quality PRNG

MaD1 Model

K
e
y

s
c
h
e
d
u
li
n
g

Initiali-
zation

Pseudo
random
genera-
tion

10

MaD1 – Algorithm Design 1

 Data Structure (next slide)
 Key scheduling

– Key size: up to 64 bytes (512 bits)
– MARC-bb KSA

 Initialization
– state S (the first 256 bytes of Sa) is initialized using MARC-bb KSA
– The second 256 bytes of Sa and 512 bytes of Sb are initialized using copy-

and-shuffle process.
– Four integers a, b, c, and d are initialized using MARC-bb PRGA.

 Pseudorandom generation
– Use 64-bit operations -- All state tables (Sa and Sb) and output sequence

buffer T are cast into and used as 64-bit integer arrays.
– Each generation round consists of 32 iterations.
– In each iteration, two 64-bit integers are generated and one 64-bit integer

element of state table S is updated.

11

MaD1 – Algorithm Design (cont.)

Data Structure

12

MaD1 – Algorithm Design 2

State table S and index i, j, and k are initialized
using MARC-bb KSA.

addition (+) and increment (++) operations are
performed modulo 256

for r from 0 to 255

i++

j = j + S[i]

k = k ^ j

left_rotate(S[i], S[j], S[k])

Endfor

Note: left_rotate(s[i], s[j], s[k]) means

tmp=s[i], s[i]=s[j], s[j]=s[k], s[k]=tmp

Initialization: copy-and-shuffle function

13

MaD1 – Algorithm Design 3

additions are performed modulo 0x10000000000000000;

& means bitwise AND; | means bitwise OR; ##

<< means bitwise logical left shift;

>> means bitwise logical right shift.

declare a byte array of size 64

byte x[64]

cast the byte array into 64-bit integer array

x[64] => x64[8]

Pseudorandom Generation Algorithm

14

MaD1 – Algorithm Design 4

populate array x (through x64)

M = 0x7878787878787878

N = 0x0405060700010203

x64[0] = (a & M) | N

x64[1] = (b & M) | N

x64[2] = (c & M) | N

x64[3] = (d & M) | N

x64[4] = ((a >> 1) & M) | N

x64[5] = ((b >> 1) & M) | N

x64[6] = ((c >> 1) & M) | N

x64[7] = ((d >> 1) & M) | N

Pseudorandom Generation Algorithm (cont.)

15

MaD1 – Algorithm Design 5

output and update the internal state

for i from 0 to 63

a = a << 1

b = b >> 1

a = a + Sw[x[i]]

b = b + Sw[x[i]^0x78]

c = c + Sa[i]

d = d + Sb[i]

T[2i] = c ^ (a + d)

T[2i+1] = d ^ (b + c)

Sw[x[i]] = a + b

endfor

Pseudorandom Generation Algorithm (cont.)

16

MaD1 – Algorithm Design 6

 Variable x is a byte array used as indices to access state tables.
 Sw[x[i]] and Sw[x[i]^0x78] introduce pseudorandom indirect access.
 Index i guarantees all state elements get involved in each generation round.
 Sw[x[i]], Sw[x[i]^0x78], Sa[i], and Sb[i] are distinct and different from any of the

four state table integers used in the previous or next three iterations.
 In each iteration, two 64-bit integers are generated; Integers a, b, c, d, and a

“random” element in Sw are updated.

17

MaD1 - Period

 MaD1 has an 8448 bit integer-oriented internal state.

 Transition of the integer-oriented state follows a pseudorandom

mapping.

 The average period ≈ 2^4224.

18

MaD1 – Security Analysis

Attacks:
• Correlation attacks, weak keys, related key attacks, etc
• Time-Memory Tradeoff Attacks
• Guessing Attacks
• Algebraic Attacks
• Distinguishing Attacks
• Differential Attacks

Countermeasures in MaD1
– Large internal state
– State initialization with great avalanche property
– Indirect access of state element and special index control
– Non-linear pseudorandom generation
– Pseudorandom mapping state transition

19

NDPRNG: Non-Deterministic Pseudorandom Number Generation

 Non-deterministic random number generation is preferred in
some applications.

– key/seed generation
– gambling and lottery

 Existing solutions
– TRNGs:

● expensive
● relatively slow
● not generally available.

– PRNGs with entropy inputs:
● often using cryptographic primitives
● complicated algorithm and slow speed

20

NDPRNG - Design Goal and Approach

 Introduce non-deterministic feature into deterministic generator
without affecting other features.

 Focus on non-deterministic feature only.
– leaving randomness, security, etc. to deterministic algorithm

 Maintain the availability of the generators.
– using generally available entropies only

 Minimize the impact on performance.
– using as less entropy inputs as possible
– not using special entropy accumulation, evaluation, processing, and

distribution methods

21

NDPRNG - Entropy Selection

 Commonly used entropies
– user interactions with the machine
– hard drive latency
– disk timings and interrupt timings
– CPU cycle count and jiffies count
– number of threads/processes
– memory/disk utilization and other system information

 Our choice: CPU cycle count
– available on most processors
– accessible from any program (not only from the kernel)
– changing at a relatively high rate
– low cost
– difficult to manipulate or predict

22

MaD1-Non-Deterministic Pseudorandom Generation Algorithm

read CPU cycle count

e = readCCC();

preprocess the cycle count

e = e + (e << 7);

e = e + (e << 19);

e = e + (e << 37);

use the preprocessed value to modify a, b, c, and d

a = a ^ e;

b = b ^ e;

c = c ^ e;

d = d ^ e;

continue with the deterministic PRGA

Non-Deterministic Pseudorandom Generation Algorithm

23

NDPRNG – Overall Effects of Algorithm Modification

Property Impact

Randomness Positive

Security Positive

Period Positive

Performance Negative, but trivial

Availability Same

Ease of use Same

Cost Same

Non-deterministic feature Added

24

MaD1 - Statistical Test

Battery Parameters NoP
Failures

d nd d-nd nd-nd
SmallCrush Built-in 15 0 0 0 0
Crush 235 random

numbers
144 0 0 0 0

BigCrush 238 random
numbers

160 0 0 0 0

Rabbit 32x109 bits 40 0 0 0 0
Alphabit 32x109 bits 17 0 0 0 0
BlockAlphabit 32x109 bits 102 0 0 0 0

25

MaD1 – Performance Test

Generator
Sequence size (KB)

1 5 10 100 1000 10000

RC4 9.53 7.67 7.09 6.98 7.04 7.04

HC-128 55.21 13.27 7.96 3.58 3.15 3.11

MaD1 (32-bit) 47.97 12.01 7.09 3.04 2.61 2.59

MaD1 (64-bit) 38.70 8.06 4.28 0.99 0.63 0.61

Pseudorandom Number Generation Speed (cycle/byte)

26

MaD1 - Summary

 a new word-based pseudorandom number generator
 a huge internal state of 8448 bits, long period
 secure against various known attacks
 Very good statistical properties - passes all TESTU01 tests
 ultrafast
 Non-deterministic feature added with little cost

	Slide 1
	Outline
	Introduction
	MARC-bb: MARC as a Building Block
	MARC-bb Key Scheduling Algorithm (KSA)
	MARC-bb Pseudorandom Generation Algorithm(PRGA)
	MARC-bb: Chi-Square Statistic Test
	MARC-bb: Chi-Square Statistic Test (Cont.)
	MaD1 – An Ultrafast High Quality PRNG
	MaD1 – Algorithm Design
	MaD1 – Algorithm Design
	MaD1 – Algorithm Design
	MaD1 – Algorithm Design
	MaD1 – Algorithm Design
	MaD1 – Algorithm Design
	MaD1 – Algorithm Design
	MaD1 - Period
	MaD1 – Security Analysis
	NDPRNG: Non-Deterministic Pseudorandom Number Generation
	NDPRNG - Design Goal and Approach
	NDPRNG - Entropy Selection
	MaD1-Non-Deterministic Pseudorandom Generation Algorithm
	NDPRNG – Overall Effects of Algorithm Modification
	MaD1 - Statistical Test
	MaD1 – Performance Test
	MaD1 - Summary

