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Generalizing Sudoku to three dimensions

Tiffany A. Lambert and Paula A. Whitlock

Abstract. The well-known logic puzzle Sudoku can be generalized from two to three di-
mensions by designing a puzzle that is played on the faces of a cube. One variation, already
introduced as a puzzle by Dion Church, uses three adjacent faces. Another variation uses
all six faces. We have developed a set of rules and constraints for both three-dimensional
Sudoku variations and have studied the properties using the method of simulated anneal-
ing.
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1 Introduction

Sudoku is a logic puzzle consisting of a n2�n2 grid of cells partitioned into n2 n�n
blocks. When completed, every row, column and block in the puzzle must contain
the numbers 1–n2 just once. A Sudoku puzzle comes with some cells assigned
values, called fixed cells, and the empty cells are to be filled in by the player.
Published puzzles usually have n D 3; 4 or 5 and the rules can be summarized as:

� Each row of cells contains the integers 1 through n2 exactly once.

� Each column of cells contains the integers 1 through n2 exactly once.

� Each n � n block of cells contains the integers 1 through n2 exactly once.

The general problem of solving Sudoku puzzles is known to be NP-Complete [1],
and many methods have been developed to obtain optimal solutions. The Sudoku
examples most people are familiar with are called logic-solvable because a logical
chain of reasoning will usually lead to a solution. But there also exist puzzles
whose solution can only be found by guessing a random solution or by applying
brute force iteration through all possible combinations. Calculating exactly how
many unique puzzle solutions exist is an interesting combinatoric problem [2, 3].

As the popularity of Sudoku has grown, so has the number of playing varia-
tions. There have been several attempts to make Sudoku more challenging [1, 4].
A particular version, published several years ago, was Dion Church’s attempt at
three-dimensional Sudoku, shown in Figure 1, which is played on three faces of
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Figure 1. The original three face Dion Church puzzle.

a cube [5]. In the original published version of the puzzle, each face followed the
traditional rules for the Sudoku puzzle. In addition, the cells on the edges of each
face matched.

This paper describes the analyses of puzzles similar to the one proposed by Dion
Church. We also discuss the extension of the puzzle to the six faces of a cube. We
label both these versions three-dimensional Sudoku.

2 3D Sudoku puzzles

2.1 The three face model

Our three-dimensional Sudoku models have a much larger state space than a reg-
ular two-dimensional Sudoku puzzle. In our first variation with three faces, each
face is an individual puzzle and follows the traditional rules of Sudoku. The size
of the individual blocks on each face studied here may have either n D 3 or n D 4.
The latter will yield a face that is a 16�16 grid. The edges where the faces meet re-
quire additional constraints. We considered both the original Dion Church puzzle
constraints which stipulate that the cells on the face edges must match as shown in
Table 1 and the alternative, shown in Table 2, that the cells on the edges must differ.
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1 9 5 3 6 2 7 8 10 16 12 11 4 13 15 14

1 9 5 3 6 2 7 8 10 16 12 11 4 13 15 14

Table 1. A sample edge of two faces where the cell values match when n D 4.

1 9 5 3 6 2 7 8 10 16 12 11 4 13 15 14

16 4 2 11 7 9 13 14 10 5 15 3 6 8 12 1

Table 2. A sample edge of two faces where the cell values do not match when n D 4.

2.2 The six face model

Our extended version of a three-dimensional Sudoku puzzle considers the six faces
of a cube. Opened out to two dimensions, the puzzle can be displayed as in Fig-
ures 2 and 3. For simplicity, completed puzzles with a block size of 2 � 2 are
shown. The puzzle in Figure 2 has the constraint that cells on the face edges do
not match in value. Figure 3 illustrates the alternative constraint that puzzles on
the edges do match. While the diagrams in Figures 2 and 3 seem to imply that the
faces could be considered independently, this is, of course, untrue. Every face is
dependent on four other faces.

The techniques for solving Sudoku puzzles are many and use such approaches
as logical search methods [6], constraint programming [1], and genetic algo-
rithms [7]. Because the three-dimensional state space is large, a general and effi-
cient method was needed. Lewis [8,9] used simulated annealing [10] to investigate
the properties of two-dimensional puzzles. This algorithm searches for the optimal
solution to a problem by using Monte Carlo methods [11].

3 Simulated annealing applied to solving Sudoku puzzles

With simulated annealing, an optimization problem is organized to use a cost func-
tion, U.X/, to measure how close a proposed solution is to an optimal solution.
The probability distribution of the proposed solutions is given by

F.X/ / e���U.X/ (3.1)

where � is labeled an “inverse temperature.” The cost function has either a max-
imum or a minimum when an optimal solution is located. The search algorithm
begins at a “high temperature” which allows large excursions into the initial search
space. As the cost function value changes, the value of � changes according to
a cooling schedule.
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Figure 2. A complete six face puzzle when n D 2. In this case the edge cells do not
match.

In Lewis’ approach [8] for the two-dimensional puzzle, all empty cells of the
initial puzzle are filled in randomly within each block. The random values are
chosen from 1 to n2 where the fixed cell values in the block have been removed
from the list. The cost function is then computed as the sum of the values in the
cells of each row and column. In a completed, correct puzzle the contribution to
the sum per row or column is .n2 C 1/ � n2=2 and this is subtracted from the cost
function. A solution has been found when U.X/ D 0. The algorithm proceeds
by proposing a random swap between two non-fixed cells in a block and the cost
function is recalculated. The swapped values are always accepted if the cost has
decreased. However, this iterative improvement may get stuck in a local minimum
rather than finding the optimal solution. Simulated annealing, therefore, uses the
Metropolis algorithm [12] as a means to escape local minima. The latter algorithm
will accept a move probabilistically that increases the cost function. The number
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Figure 3. A complete six face puzzle when n D 2. In this case the edge cells match.

of swaps attempted at each temperature, a Markov chain, is related to the number
of empty cells. At high temperature, most of the swaps of cells are accepted. At
a low temperature, only the most favorable swaps are accepted. The cost function
approaches a minimum, 0, as the algorithm approaches a solution.

Lewis’s simulated annealing method is capable of producing a solution for both
partially filled, as well as completely empty grids. Thus, it is not only a solver, but
also a generator for all size Sudoku grids.

3.1 Application to the Dion Church Sudoku puzzle

We adapted the simulated annealing method and Lewis’s code to solve the Dion
Church three faces of a cube puzzle. The two-dimensional puzzle was represented
in the simulated annealing code as a two-dimensional array of values. To ac-
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Figure 4. Implementation of the 3-face puzzle in the simulation.

commodate the three-dimensional puzzle, the array was expanded to a size of
2n2 � 2n2. The array was divided into four quadrants, one for each face, with
the fourth quadrant unused, see Figure 4. The edge constraints were implemented
so that the edges correspond as follows:

� Edge A1 adjoins edge B1

� Edge B2 adjoins edge C2

� Edge C3 adjoins edge A3

In order to configure the edge constraint into the cost function, U.X/, in Eq. (3.1),
we added an edge contribution to the row and column cost. For every edge cell
that fails the constraint condition, we added one point to the total edge cost func-
tion. This amount is consistent with the column and row sums and has a sufficient
influence in accepting or rejecting a move.
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The six faces of a cube puzzle was implemented as two parallel 2n2 � 2n2

arrays with the added constraints that every edge is dependent on another face. The
Markov chain of moves involves swaps in both the parallel arrays. Furthermore,
every time an edge cell is swapped, its value must be compared with an edge cell
of the neighboring face. This made the determination of a solution very slow.

3.2 The cooling schedule

In the two-dimensional case [8], the temperature was decreased by 1 % after the
annealing process equilibrated, i.e. completed one Markov chain of moves, at each
inverse temperature. We refer to this as a 99 % cooling rate. It worked well for the
two-dimensional 3 � 3 grids, but in the larger three-dimensional puzzle with edge
constraints, the constant cooling schedule was no longer efficient. Increasing the
change in temperature to 5 % (95 % cooling rate), 10 %, or 15 % did improve the
efficiency of the code, but increased the occurrence of freezing into non-optimal
solutions. This led to experiments with dynamic cooling schedules in which the
temperature decreases by a larger amount initially, and then at a much slower rate
as the system approaches a solution. To achieve this, we made the cooling rate
a function of the cost, so as the cost function decreases from its initial state, so
does the change in temperature. The resulting algorithm is greedy and much more
efficient.

In Table 3, the average times using constant percentage changes in the temper-
ature are shown. Reheats to a high temperature were performed if the algorithm
could not find a solution for a run within the allocated time. Reheats were allowed
to occur three times before the algorithm terminated the search. Both sets of edge
constraints had similar behaviors.

Increasing the size of the temperation change from 1 % to 20 % did lead to
faster calculations. However, from Table 3, it is clear that a cooling rate less than
70 % causes the system to cool too quickly and not find a solution. The run times
for several dynamic cooling schedules are shown in Table 4, where the cooling
rate is dependent on the change in the overall cost function. The corresponding

50 % 60 % 65 % 70 % 75 % 80 % 85 % 90 % 95 % 99 %

Avg (sec) 562 383 296 103 55 43 92 80 166 853

Std. Dev. n/a n/a n/a 207 71 24 100 100 26 135

Reheats yes yes yes yes yes no yes no no no

Table 3. Timings for solving a 3-face Sudoku puzzle with constant cooling rates.
n/a indicates that a solution was not found.
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A B C D

Avg (sec) 286 58 116 29

Std. Dev. 171 59 151 13

Reheats yes yes yes no

Table 4. Timings for solving a 3-face Sudoku puzzle with dynamic cooling sched-
ules.

A B C D
change cooling change cooling change cooling change cooling
in cost rate in cost rate in cost rate in cost rate

0 50 0 85 0 50 0 50
25 65 25 80 25 55 25 60
50 80 50 70 50 65 50 70
75 90 75 65 75 70 75 75
90 95 90 55 90 80 90 80
95 99 95 50 95 85 95 90

Table 5. The changes in cooling rate as a function of the change in the cost function
from the initial value for different cooling schedules.

schedules are shown in Table 5. The timings with the dynamic cooling schedules
are dependent on the initial cooling rate, the change in the cost function from the
initial value, and the final cooling rate. Trial and error led us to cooling schedule
D which has been the most efficient. This schedule improved the run time by more
than 90 % from the initial constant cooling schedule.

The three face algorithm can easily generate many unique Sudoku puzzles start-
ing with an empty array and given a different pseudorandom number sequence. If
the code is initialized with a partially filled in grid, it will find the unique solu-
tion or if there is more than one possible solution, it will find at least one of them
in most cases. A completed puzzle generated by the simulated annealing code is
shown in Figure 5. The 0’s represent the nonparticipating cells in our representa-
tion of the puzzle.

4 Results

In the discussion that follows, the focus will be on the three face puzzle. The six
face puzzle was solvable but took a very long time even for n D 3.

Logic solvability is still a question that is being explored. There are many pa-
pers employing different methods of solving Sudoku, but little work has been done
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Figure 5. The internal representation of a completed three face puzzle in the simu-
lated annealing code. The lower right quadrant is not part of the puzzle.

on the generation of puzzles. It has not been proven, but the smallest known num-
ber of fixed cells in a 3�3 that yield a unique Sudoku solution is 17 [4]. Moreover,
it appears that at least 30 % of the cells need to be fixed for the puzzle to be logic-
solvable [8]. This idea is much harder to conceptualize in a three-dimensional
space. Computing the minimum number of givens for a unique solution is an
optimization problem that is NP-complete.

However, we can empirically study how many fixed cells are needed to produce
a unique puzzle. Using a completed three face puzzle,m cells were systematically
emptied, i.e.m D 5; 10; 15; : : : , their values removed, and the puzzle was resolved
by the code with a different sequence of pseudorandom numbers. If the new so-
lution was identical to the original puzzle after several repetitions of the process,
the solution was deemed unique. For n D 3, if less than 100–120 cells are empty,
that is 123–143 cells are fixed, the puzzle has a unique solution. However, prefer-
entially removing the values in cells on common edges leads to multiple possible
solutions when more than 45 cells are empty. For n D 4, solutions are unique
when less than 260 cells are empty. Another issue involves which cells need to
be fixed to maintain logic solvability by using a chain of reasoning. Sudoku solv-
ing programs exist that use strictly logical and/or human solving heuristics to both
solve puzzles, and can be used to determine if the puzzle is logic solvable [6].
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Figure 6. Average time to solve a three faces of a cube Sudoku puzzle when n D 3.

A fascinating aspect of using simulated annealing to find solutions to Sudoku
puzzles is the existence of what has been called a “phase transistion” in the time
to solve a puzzle as the number of initially fixed cells changes. This behavior was
first observed by Lewis [8] in the two-dimensional version of the puzzle as the
value of n was increased from 3 to 5. We have performed similar experiments
with the three faces of a cube puzzle. As the percentage of empty cells changes
from almost 0 (an almost complete puzzle) to 100 % (a puzzle with no fixed cells),
the time to solve the puzzle increases. This reflects the fact that the search space
for the almost complete puzzle is very small and increases as the percentage of
empty cells increases. For n D 3, the increase in time is monotonic, see Figure 6.
The time to solve a three face puzzle is shown versus the percentage of empty
cells. Each bar represents the average time for trying to solve 20 independent
puzzles. However, when n D 4, there are cases where no solution may be found
even though the algorithm is allowed to execute for a long time. This is shown in
Figure 7, where the arrows indicate cases where one or more of the puzzles were
not solved in over a half hour of computing time.

That such cases exist is not surprising since the two-dimensional puzzles have
been shown to be NP-complete. This very interesting phenomenon becomes hard-
er to study as n increases as the time to solve the puzzle increases dramatically.
For n D 3, a three faces of a cube puzzle starting with all cells empty, takes only
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Figure 7. Average time to solve a three faces of a cube Sudoku puzzle when n D 4.

19 seconds to find a solution. When n is increased to 4, an initially empty puzzle
takes over 325 seconds to find a solution. The case of n D 5 takes 20 times as
long to solve compared to a n D 4 puzzle. We were unable to complete a study of
the phenomenon with the six faces of a cube puzzle due to the enormously longer
solution times.

5 Conclusions

From our experiments with the cooling schedule, we have determined that both
changes in the cost function and the cooling rate are key factors in finding an
optimal solution. As the difference between the initial cost and the current cost
becomes larger, the cooling rate should become slower in order to restrict jumps
to a much less optimal solution. By changing the cooling rate dynamically, we
reduced the number of Markov chains that are started, thus decreasing the run
time.

Trial and error was used to determine how many fixed cells need to be present
to yield a unique solution. For n D 3, when cells were removed randomly from
a completed puzzle, the percent of fixed cells was found to be at least 59 %. For
n D 4, the percent of fixed cells needed increased to 67 %.



262 T. A. Lambert and P. A. Whitlock

Experiments with the three face puzzle showed that the “phase transition” in
the search time to find a solution observed in the two-dimensional puzzle is still
present. As the search space becomes larger and the number of possible solutions
increases, the time to find a solution dramatically increases. This occurs when the
number of fixed cells decreases from 50 to 30 %. In some experiments with n D 4,
no solution was found after several reheats of the algorithm.

To investigate the properties of the six face puzzle the simulated annealing al-
gorithm needs to be made more efficient, perhaps by parallelizing the code. For
example, multiple swaps could be performed in parallel (ensuring that the swapped
cells are non-overlapping) and increase the efficiency of finding a solution.

An interesting extension of the current research is the relationship between the
solving of Sudoku puzzles and the construction of point sets. It has been pointed
out by Mullen [13] that sets of mutually orthogonal Latin squares can be used to
construct (t,m,s)-nets and in some cases, the nets may have optimal properties.
It has been suggested that the search by simulated annealing to find an optimal
solution to a Sudoku puzzle could be related to finding (t,m,s)-nets with optimal
parameters.
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