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Abstract. In this work we solve the Barker-Ferry equation which ac-
counts for the quantum character of the electron-phonon interaction in
semiconductors in the framework of the Monte Carlo (MC) method.
The first part of the work considers the zero electric field formulation
of the equation in spherical coordinates. Different MC algorithms for
solving the equation are suggested and investigated.
In the second part of the work we consider the case of an applied electric
field. It is shown that the second algorithm from the first part can be
successfully modified to account for the cylindrical symmetry of the task.

1 Introduction

We consider a physical model which describes a femtosecond relaxation process
of optically excited carriers in an one-band semiconductor [6]. The process is
described by the zero electric field form of the Barker-Ferry equation [1].

f(k, t) =
∫ t

0
dt′

∫ t′

0
dt′′

∫
d3k′{S(k′,k, t′ − t′′)f(k′, t′′)

− S(k,k′, t′ − t′′)f(k, t′′)} + φ(k), (1)

with a kernel

S(k′,k, t′ − t′′) =
2V

(2π)3�2
|gk′−k|2 exp(−Γ (k′,k)(t′ − t′′)) (2)

×{(n+ 1) cos(Ω(k′,k)(t′ − t′′)) + n cos(Ω(k,k′)(t′ − t′′))}
where k is the momentum, f(k, t) is the distribution function and φ(k) is the
positive initial condition. In the kernel (2) Ω(k′,k) = (ε(k′) − ε(k) − �ω)/�,
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where ω is the phonon frequency, �ω is the phonon energy and ε(k) is the electron
energy. The coupling

gk′−k = −i
[
2πe2�ω

V

(
1
ε∞

− 1
ε s

)
1

(k′ − k)2

] 1
2

applies to the Fröhlich interaction with LO phonons, which means the phonon
energy �ω is taken constant, (ε∞) and (εs) are the optical and static dielectric
constants and V is the volume. The Bose function n = 1/(exp[�ω/KT ]−1), where
K is the Boltzmann constant and T is the temperature of the crystal, corresponds
to an equilibrium distributed phonon bath. The damping Γ (k′,k) = Γ (k′)+Γ (k)
is related to the finite carrier lifetime for the scattering process:

Γ (k) =
∫

d3k′ V

23π2�

∑
±

‖gk′−k‖2δ(ε(k′) − ε(k) ± �ω)(n+
1
2

± 1
2
).

Let us specify that the wave vectors k, k′ belong to a finite domain G which
is sphere with radius Q. Denote with k and k′ the norm of the corresponding
vectors k and k′. Let θ be the angle between this two vectors and the k′

z axis
be oriented along k. It holds: d3k′ = k′2 sin θdk′dθdξ, θ ∈ (0, π), ϕ ∈ (0, 2π).
The functions Γ and Ω depend only on the radial variables k and k′ which is
denoted by Γk,k′ and Ωk,k′ . Equation (1) in spherical coordinates becomes [5]:

f(k, t) =
∫ t

0
dt′

∫ t′

0
dt′′

∫ Q

0
dk′K(k, k′) × (3)

{S1(k, k′, t′, t′′)f(k′, t′′) + S2(k, k′, t′, t′′)f(k, t′′)} + φ(k),

where

K(k, k′) = c
k′

k
ln

(
k + k′

|k − k′|
)
, (4)

S1(k, k′, t′, t′′) = −S2(k′, k, t′, t′′) = exp(−Γk′,k(t′ − t′′))
× {(n+ 1) cos(Ωk′,k(t′ − t′′)) + n cos(Ωk,k′(t′ − t′′))}

and the constant c = e2ω
∣∣ 1

ε ∞ − 1
ε s

∣∣ /(π�). By using the indentity
∫ t

0 dt
′ ∫ t′

0 dt′′ =∫ t

0 dt
′′ ∫ t

t′′ dt
′, equation (3) can be presented in the following form:

f(k, t) =
∫ t

0
dt′′

∫ Q

0
dk′K(k, k′) (5)

× [K1(k, k′, t, t′′)f(k′, t′′) + K2(k, k′, t, t′′)f(k, t′′)] + φ(k),

where

Ki(k, k′, t, t′′) =
∫ t

t′′
dt′Si(k, k′, t′, t′′), i = 1, 2. (6)
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Finally, equation (5) allows an analytical evaluation of the integrals (6), (see [2]).
Thus we obtain the third integral form:

f(k, t) =
∫ t

0
dt′′

∫ Q

0
dk′K(k, k′) (7)

× [K1(k, k′, t, t′′)f(k′, t′′) +K2(k, k′, t, t′′)f(k, t′′)] + φ(k),

where

K1(k, k′, t, t′′) = −K2(k′, k, t, t′′) =

(n+ 1)Lk′,k

[
1+

(
Ωk′,k

Γk′,k
sin(Ωk′,k(t−t′′))−cos(Ωk′,k(t−t′′))

)
exp(−Γk′,k(t−t′′))

]
+nLk,k′

[
1 +

(
Ωk,k′
Γk,k′ sin(Ωk,k′(t− t′′)) − cos(Ωk,k′(t− t′′))

)
exp(−Γk,k′(t− t′′))

]
and Lk′,k = Γk′,k/(Ω2k′,k + Γ 2k′,k).

We note that the Neumann series of the integral equation (1) converges [5]
and the solution can be estimated by the MC method.

In this work three MC algorithms for solving the above three analytically
equivalent integral formulations of the equation (1) are considered. They use
backward time evolution of the numerical trajectories. The density function in
the Markov chain for the transition k → k′ is chosen to be proportional to the
contribution (4). The first algorithm is called the twice time dependent iterative
Monte Carlo (TTDIMC) algorithm and estimates equation (3). The following
conditional density function, q(t′, t′′) = c1 exp(−Γk′,k(t′ − t′′)), is used to sample
time t′ ∈ (0, t) and t′′ ∈ (0, t′) in the Markov chain (c1 is a normalized constant).
The second algorithm is called the randomized iterative Monte Carlo (RIMC)
algorithm. The integral, which depend on t′ in equation (5), is calculated on an
each step in the Markov chain using a MC estimator. Finally, the third algorithm
is called the one time dependent iterative Monte Carlo (OTDIMC) algorithm. It
solves an one time-dimension integral form (7).

2 Monte Carlo Algorithms

The biased Monte Carlo estimator for the solution of equations (3,5,7) at the
fixed point (κ0, τ0) is defined as follow:

ξlε [κ0, τ0] = φ(κ0) +
lε∑

j=1

Wα
j φα(κj), (8)

where

Wα
j = Wα

j−1
K(κj−1, κj)να(κj−1, κj , τj−1, τj)

pαp(κj−1, κj)q(τj−1, τj)
,Wα

1 = 1, α = 1, 2, j = 0, 1, . . . , lε.

Here να(κ, κ′, τ, τ ′) = Sα(k, k′, t′, t′′) in the TTDIMC algorithm; να(κ, κ′, τ, τ ′)
= Kα(k, k′, t, t′′) in the OTDIMC algorithm; and να(κ, κ′, τ, τ ′) is a Monte Carlo



152 T.V. Gurov and P.A. Whitlock

estimator of the integrals (6) in the RIMC algorithm. p(κ, κ′) and q(τ, τ ′) are
transition density functions in the Markov chain and their functional form is
shown in the algorithms. pα (α = 1, 2) are probabilities for chosing the quantities
να(κ, κ′, τ, τ ′).

Using N independent samples of the estimator (8) we obtain [7]

ξlε [κ0, τ0] =
1
N

N∑
i=1

(ξlε [κ0, τ0])i ≈ f(κ0, τ0).

The corresponding MC algorithms for finding a solution in a fixed point (k, t) of
equations (3,5,7) for one random walk is described as follow:

TTDIMC algorithm:

1. Choose any positive small number ε and set initial values ξ = φ(k), W = 1.
2. Sample a value k′ with a density function p(k, k′) = CK(k, k′) using a

decomposition MC method ( C is the normalized constant).
3. Sample the values t′ = − log(β1(exp(−Γk,k′t) − 1) + 1)/Γk,k′ and t′′ =

log(β2(exp(Γk,k′t′)−1)+1)/Γk,k′ , where β1 and β2 are uniformly distributed
random variables in (0, 1).

4. Calculate να = Sα(k, k′, t′, t′′) and pα = |να|
|ν1|+|ν2| , (α = 1, 2).

5. Choose a value β, an uniformly distributed random variable in (0, 1).
6. If (p1 ≤ β) then

W := W
K(k, k′)ν1

p1p(k, k′)q(t′, t′′)
, ξ := ξ +Wφ(k′), and k := k′;

else

W := W
K(k, k′)ν2

p2p(k, k′)q(t′, t′′)
, ξ := ξ +Wφ(k).

7. Set t := t′′ and repeat from step 2 until t ≤ ε.

RIMC algorithm:

1. Choose any positive small number ε and set initial values ξ = φ(k), W = 1.
2. Sample a value k′ as in the TTDIMC algorithm.
3. Sample a value t′′ with a density function q(t′′) = 1/t.
4. Sample N1 independent random values of t′ with a density function q1(t′) =

1/(t− t′′).
5. Calculate

να =
t− t′′

N1

N1∑
i=1

Sα(k, k′, t′i, t
′′), pα =

|να|
|ν1| + |ν2| , α = 1, 2.

6. Choose a value β, an uniformly distributed random variable in (0, 1).
7. Do same as steps 6 and 7 in the TTDMC algorithm.
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OTDIMC algorithm:

1. Choose any positive small number ε and set initial values ξ = φ(k), W = 1.
2. Sample a value k′ as in the TTDIMC algorithm.
3. Sample t′′ = log(β1(exp(Γk,k′t) − 1) + 1)/Γk,k′ with a density function

q(t, t′′) = Γk,k′ × exp(−Γk,k′(t− t′′))/(1 − exp(−Γk,k′)), where β1 is an uni-
formly distributed random variable in (0, 1).

4. Calculate να = Kα(k, k′, t, t′′) and pα = |να|
|ν1|+|ν2| , (α = 1, 2).

5. Choose a value β, an uniformly distributed random variable in (0, 1).
6. Do same as steps 6 and 7 in the TTDMC algorithm.

The decomposition MC method used in the second step of the algorithms is given
below. The density function p(k, k′) can be expressed as an infinite weighted sum
of other density functions [2]:

p(k, k′) = CK(k, k′) =
∞∑

i=0

Cipi(k, k′), Ci ≥ 0,
∞∑

i=0

Ci = 1, (9)

where

Ci =




2
(2i+1)(2i+3) , when 0 ≤ k′ < k

4k2

(4i2−1) (1−(
k
Q )

2i−1)
(Q−k)[2k+(Q+k) ln(Q+k

Q−k )]
, when k < k′ ≤ Q

pi(k, k′) =

{
(2i+ 3) (k

′)2i+2

k2i+3 , when 0 ≤ k′ < k

(2i− 1)
[

(Qk)2i−1

Q2i−1−k2i−1
1

(k′)2i

]
, when k < k′ ≤ Q.

Thus:

1. Sample a random integer I such that Prob(I = i) = Ci.
2. Sample k′ with the i-th density function pi(k, k′).

This can easily be done using the inverse-transformation method.
In practice, the decomposition MC method is applied for a finite number of

terms in the series (9).
The iterative MC algorithms that approximate some deterministic iterative

method are characterized by two types of errors -systematic and stochastic [2,4].
Now following [4] we obtain the relation

E(ξlε [κ0, τ0] − f(κ0, τ0))2 =
V ar(ξlε [κ0, τ0])

N
+ (f(κ0, τ0) − Eξlε [κ0, τ0])

2

≤ d0
N

+ d1ε
2 = µ2, (10)

where µ is the desired error, d1 is a constant and d0 is an upper bound of the
variance. Therefore, in order to obtain the error of order µ the optimal order of
the quantities N and ε must be N = O(µ−2) and ε = O(µ). In addition, when
we apply the RIMC algorithm we can take N1 = O(µ−2), too. Let us note that
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the choice of the density function (9) guarantees that the variance of the MC
estimator is bounded (see [2]).

The computational complexity of the presented algorithms can be measured
by the quantity F = NtmE(lε). Here N is the number of random walks in the
corresponding algorithms; E(lε) is the mathematical expectation of the number
of transitions in the Markov chain and tm is the mean time for modeling one
transition. In the case of the RIMC algorithm the quantity F must also be
multiplied with the variable N1.

According to (10) the number of the random walks and the number of transi-
tions are connected with the stochastic and systematic errors. However the times
for modeling one transition depend on the complexity of the transition density
functions and the choice of the random number generator. The MC algorithms
under consideration are realized using the Scalable Parallel Random Number
Generator (SPRNG) Library [3]. Results for the computational cost and the
accuracy of the MC solutions are obtained and compared in the next section.

3 Numerical Results

The results discussed in the following have been obtained by the iterative MC
algorithms under consideration. Material parameters for GaAs have been used:
the electron effective mass is 0.063, the optimal phonon energy is 36meV , the
static and optical dielectric constants in the Fröhlich coupling are εs = 10.92

0

10

20

30

40

50

0 500 1000 1500 2000 2500 3000 3500

S
 o

 l 
u 

t i
 o

 n
 -

 a
.u

. 

k*k

initial d.f.
t=100 fs, N=16000
t=150 fs, N=50000

t=200 fs, N=250000
t=300 fs, N=7.5 mln.

t=400 fs, N=200 mln.

Fig. 1. The electron energy distribution k ∗ f(k, t) versus k ∗ k. The drelaxation leads
to a time-dependent broadening of the replicas. ε = 0.001.
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Table 1. Comparison of the computational complexity using the iterative MC algo-
rithms.

t N E(lε) σ2
N CPUtime

50fs 10000 8.1758 0.04894 0m56.05s
TTDIMC 100fs 250000 9.2723 6.24605 24m7.73s
algorithm 150fs 6 mln. 10.2238 809.465 10h1m39.64s

200fs 150 mln. 11.1173 121474.56 250h31m45.12s

50fs 5000 11.8640 0.01494 17m16.57s
RIMC 100fs 16000 12.4894 0.1382 1h17m22.42s
algorithm 150fs 50000 12.9134 1.05977 4h43m46.18s

200fs 250000 13.2038 8.6563 26h13m18.38s

50fs 5000 11.9553 0.01575 0m41.49s
100fs 16000 12.7111 0.1481 2m22.05s

OTDIMC 150fs 50000 13.2299 0.9982 7m43.35s
algorithm 200fs 250000 13.6268 6.6242 39m52.90s

250fs 1.5 mln 13.9038 87.3812 2h34m57.73s
300fs 7.5 mln. 14.2694 347.539 21h1m12.56s

and ε∞ = 12.9. The lattice temperature is zero. The initial condition at t = 0
is given by a function which is Gaussian in energy, (φ(k) = exp(−(b1k2 − b2)2)
b1 = 96 and b2 = 24), scaled in a way to ensure, that the peak value is equal to
unity. The quantity presented on the y-axes in Figs. 1–2 is k ∗ f(k, t), i.e. it is
proportional to the distribution function multiplied by the density of states. It
is given in arbitrary units. The quantity k ∗ k, given on the x-axes in units of
1014/m2, is proportional to the electron energy.

The iterative MC algorithms were implemented in C and compiled with the
“cc” compiler at optimization level “-fast”. Numerical tests on Sun Ultra Enter-
prise 450 with 4 Ultra-SPARC, 400 MHz CPUs running Solaris were performed.
Fig.1 shows the electron distribution at long evolution times using the OT-
DIMC algorithm. The simulation domain is between 0 and Q = 66 × 107/m.
The product k ∗ f(k, t) is calculated in 65 points.

Comparison of the electron energy distribution, which is obtained by the
TTDIMC, RIMC and OTDIMC algorithms, is shown on Fig.2 for evolution
times t = 100fs and t = 150fs. We see that the MC solutions approximately
coincide. Therefore, the use of the all algorithms is correct.

The results for the computational cost (CPU time for all 65 points) of the
iterative MC algorithms are shown in Table 1. Here, N is the number of random
walks need to obtain approximately smooth solutions using the different MC
algorithms and σ2N is the average estimate of the variance V ar(ξlε [κ0, τ0]) for
all 65 points. We see that the efficiency of the OTDIMC algorithm is superior.
In addition, the comparison of the computational cost between both TTDIMC
and RIMC algorithms shows that first algorithm is more efficient for evolution
times less then 150fs and vice versa, with the increase of the evolution time
the CPU time for TTDIMC algorithm increase drastically. In order to obtain
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Fig. 2. Comparison of the electron energy distribution k ∗ f(k, t) versus k ∗ k obtained
by the TTDIMC, RIMC and OTDIMC algorithms, ε = 0.001.

a good balance between both stochastics errors in the RIMC algorithm we take
N1 = 1000, when t− t′′ > 20fs and N1 = 100, when t− t′′ ≤ 20fs.

The dependence of the variances, in a logarithmic scale ( ln(σ2N )), on the
evolution time is shown on Fig. 3.
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Fig. 3. Comparison of the variances, in a logarithmic scale ( ln(σ2
N )), for N =

500000, ε = 0.001.

We conclude that in the case of an applied electric field the OTDIMC al-
gorithm is not applicable because the integrals (6) are very complex and they
can’t be evaluated analytically. The numerical results show that the use of the
TTDIMC or the RIMC algorithms depend on the evolution time for estimation
of the electron distribution.

References

1. J. Barker and D. Ferry. Self-scattering path-variable formulation of high field time-
dependent quantum kinetic equations for semiconductor transport in the finite-
collision-duration regime, Physical Review Letters, 42(26), 1779–1781, 1979.

2. T. V. Gurov and P. A. Whitlock. An efficient backward Monte Carlo estimator
for solving of a quantum kinetic equation with memory kernel, Mathematics and
Computers in Simulation, 2001, (submitted).

3. M. Mascagni. SPRNG: A scalable library for pseudorandom number generation,
in O. Iliev et al. (eds.), Recent Advances in Numerical Methods and Applications
II, World Scientific, Singapore, 284–295, 1999.

4. G. A. Mikhailov. New Monte Carlo Methods with Estimating Derivatives, Utrecht,
The Netherlands, 1995.

5. M. Nedjalkov, T. Gurov, and I. Dimov. Statistical modeling of pulse excited elec-
tron quantum kinetics in a one-band semiconductor, Math. and Comp. in Simula-
tion, 47(2-5), 391–402, 1998.

6. J. Schilp, T. Kuhn, and G. Mahler. Physical Review B, 47(8), 5435–5447, 1994.
7. I. M. Sobol. Monte Carlo numerical methods, Nauka, Moscow, 1973, (in Russian).


	1 Introduction
	2 Monte Carlo Algorithms
	3 Numerical Results
	References

