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Abstract. The applied electrical field destroys the spherical symmetry
of the field less Barker-Ferry equation. The dimensionality of the task
increases and furthermore no general integration domain can be specified
due to the correlation of the phase space and time coordinates. In this
part of the work we propose and integral formulation which decouples
these coordinates. The equation is solved by the randomized iterative
Monte Carlo algorithm introduced in Part I. An analysis of the quantum
effects demonstrated by the solutions is presented.

1 Integral Form of the Barker-Ferry Equation

The quantum-kinetic equation, explored in Part I, has been obtained in a frame-
work of a physical model which describes the relaxation of semiconductor elec-
trons initially excited by a laser pulse [1]. The equation appears as a simplified
Barker-Ferry (B-F) equation [2] written for the case of zero electric field. The
original formulation of the B-F equation accounts for the effect of the electric
field on the process of collision - the intra collisional field effect. It is argued that
this effect plays a negligible role in the stationary solution of the quantum-kinetic
equation [3]. Here we investigate the transient problem, i.e. electron - phonon
relaxation of initially excited electrons in the presence of an applied electric field
E. The B-F equation has the following integro-differential form:

∂f(k, t)
∂t

+ F · ∇kf(k, t) = (1)
∫ t

0
dt′

∫
dk′ {S(k′,k, t, t′)f(k′(t′), t′) − S(k,k′, t, t′)f(k(t′), t′)}

S(k′,k, t, t′) =
2V

(2π)3�2
|gq|2 exp(−Γ (t − t′)) ×

[
(nq + 1) cos

(∫ t

t′
dτΩ(k(τ),k′(τ))

)
+ nq cos

(∫ t

t′
dτΩ(k′(τ),k(τ))

)]
,
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where F = eE/�, nq is the Bose function, ωq generally depends on q = k′ − k,

k(t′) = k − F(t − t′); Ω(k(τ),k′(τ)) =
ε(k(τ)) − ε(k′(τ)) + �ωq

�
.

The damping factor Γ is considered independent of the electron states k and
k′. This is reasonable since Γ weakly depends on k and k′ for states in the
energy region above the phonon threshold, where the majority of the electrons
reside due to the action of the electric field. An application of the method of
characteristics leads to the following integral form of (1):

f(k, t) = φ(k(0)) +∫ t

0
dt′

∫ t′

0
dt′′

∫
dk′ {S(k′,k, t′, t′′)f(k′(t′′), t′′) − S(k,k′, t′, t′′)f(k(t′′), t′′)}

The equation obtained is rather inconvenient for a numerical treatment since
the solution for a phase space point k at instant t is related to the solutions at
shifted points k−F(t− t′′). The shift depends on the electric field and the time
interval 0 ≤ t′′ ≤ t and hence no general integration domain can be specified in
the phase space. This problem can be solved by the following transformation. A
new variable kt and function f t are introduced such that:

kt
1 = k1 − Ft; kt

1(τ) = kt
1 + Fτ ; f(k, t) = f(kt + Ft, t) def= f t(kt, t),

where k1 stands for k and k′ respectively. Then

f(k1(t′′), t′′) = f(kt
1 + Ft′′, t′′) = f t(kt

1, t
′′).

The transformation decouples the phase space and time arguments of the cosine
functions in S according to:

ε(k′(τ)) − ε(k(τ)) = ε(k′t) − ε(kt) + 2�F(q)τ ; F(q) =
�

2m
q · F.

The integral equation becomes (the superscript t is omitted):

f(k, t) = φ(k) +∫ t

0
dt′

∫ t′

0
dt′′

∫
dk′ {S(k′,k, t′, t′′)f(k′, t′′) − S(k,k′, t′, t′′)f(k, t′′)}

The symmetry around the direction of the electric field can be used to reduce
the number of variables in the equation. In cylindrical coordinates (r, k, θ) with
r chosen normal to the field direction, the relevant variables become x = (r, k)
where x is a two dimensional point. For zero lattice temperature (nq = 0) the
equation obtained reads:

f(x, t) = φ(x) +
∫ t

0
dt′′

∫
G

dx′
[
K(x, x′)× (2)

{∫ t

t′′
dt′ S1(x, x′, t′, t′′)

}
f(x′, t′′) +

{∫ t

t′′
dt′S2(x, x′, t′, t′′)

}
f(x, t′′)

]
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where x ∈ G = (0, Q) × (−Q,Q), G is a constant,

K(x, x′) = K(r, r′, k, k′) =
Gr′√

((r − r′)2 + (k′ − k)2)((r + r′)2 + (k′ − k)2)
;

S1(x, x′, t′, t′′) = −S2(x′, x, t′, t′′) =

e−Γ (t′−t′′) cos
((

Ω(x, x′) − �

2m
F (k′ − k)(t′ + t′′)

)
(t′ − t′′)

)
. (3)

At this temperature the semiclassical solution has a simple behavior, which will
be the reference background for exploring the effects imposed by the quantum-
kinetic equation. The analysis of the quantum effects is presented in the last
section.

Equation (2) is solved by a randomized iterative Monte Carlo algorithm
(RIMC) described in the next section. We note that the algorithm can be gen-
eralized for finite temperatures in a straightforward way.
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Fig. 1. Semiclassical (SC) and quantum solutions (Q) for zero electric field



186 M. Nedjalkov et al.

2 The RIMC Algorithm

The biased Monte Carlo estimator for the solution of equation (2) at the fixed
point (x0, t0) = (r0, k0, t0) is defined as follows:

ξlε [x0, t0] = φ(x0) +
lε∑

j=1

Wα
j φα(xj), (4)

Wα
j = Wα

j−1
K(xj−1, xj)να(xj−1, xj , tj−1, tj)

pαp(xj−1, xj)q(tj)
, Wα

1 = 1, j = 0, 1, . . . , lε

Here να(x, x′, t, t′′) is the estimator of the integrals
{∫ t

t′′ dt
′Sα(x, x′, t′, t′′)

}
.

q(t′′) and p(x, x′) are transition density functions in the Markov chain and pα,
(α = 1, 2) are probabilities for choosing one of the above integrals. Using N
independent samples of the estimator (4) we obtain [4]:

ξlε [x0, t0] =
1
N

N∑
i=1

(ξlε [x0, t0])i ≈ f(x0, t0). (5)

The RIMC algorithm for one random walk is given by the following steps:
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Fig. 2. Comparison of the solutions for the two orthogonal directions at zero
electric field for evolution times 100fs and 200fs.
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1. Choose a positive small number ε and set initial values ξ := φ(x),W := 1.
2. Sample a value t′′ with a density function q(t′′) = 1/t.
3. Sample a value x′ = (r′, k′) with a density function

p(x, x′) = C/((r − r′)2 + (k − k′)2)
1
2

using an acceptance-rejection method ( C is a constant for normalization).
4. Sample N1 independent random values of t′ with a uniform density function

q1(t′) = 1/(t − t′′).
5. Calculate να = t−t′′

N1

∑N1
i=1 Sα(x, x′, t′i, t

′′), pα = |να|
|ν1|+|ν2| , α = 1, 2.

6. Choose a value β, uniformly distributed random variable in (0, 1).
If (p1 ≤ β) then W := W K(x,x′)ν1

p1p(x,x′)q(t′′) , ξ := ξ +Wφ(x′), x := x′ ;

else W := W K(x,x′)ν2
p2p(x,x′)q(t′′) , ξ := ξ +Wφ(x).

7. Set t := t′′ and repeat from step 2 until t ≤ ε.

The acceptance-rejection method used in the third step is given below. Using the
substitution u = r−r′, v = k−k′ the domain G is divided into four sub domains
(Gi = (0, ai) × (0, bi)), (i = 1, . . . , 4). We can sample in every sub domain Gi

with probability Ci/C using density function pi(u, v) = Ci/(u2 + v2)
1
2 . Then:

1. Choose values β1 and β2, uniformly distributed in the interval (0, 1).
2. Sample u = Riβ1 cos(β2π/2) and v = Riβ1 sin(β2π/2), where R2i = a2i + b2i .
3. If ((u ≤ ai)&(v ≤ bi)) accept u and v, else repeat from 1.

The empirical results show that the efficiency of the acceptance-rejection al-
gorithm is approximately 56%. The RIMC algorithm can be modified by a
choice of alternative transition density function. For example, p̃(r, k, r′, k′) =
C̃r′p(r, k, r′, k′). Such a choice guarantees that the variance of the MC estimator
is bounded [5], because the singularity of the kernel of (2) is canceled by the
transition density function.

3 Results and Discussions

The simulation results are obtained for GaAs with material parameters taken
from [1]. A value Q = 66 ·107m−1 has been chosen for the integration domain G.
The phonon frequency is a constant, ω. For zero field the symmetry of the task
allows the use of spherical coordinates with wave vector amplitude |k|. Figure
1 compares semiclassical (inverse hyperbolic cosine [6]) and quantum solutions
|k|f(|k|, t) for times 100fs and 400fs as a function of |k|2. The quantity |k|2 is
proportional to the electron energy in units 1014m−2. Semiclassical electrons can
only emit phonons and loose energy equal to a multiple of the phonon energy
�ω. They evolve according to a distribution, patterned by replicas of the initial
condition shifted towards low energies. The electrons cannot appear in the region
above the initial distribution.

The quantum solutions demonstrate two effects of deviation from the semi-
classical behavior. There is a retardation in the build up of the remote peaks
with respect to the initial condition peaks. The replicas are broadened and the
broadening increases with the distance to the initial peak. This quantum effects
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Fig. 3. Solutions |k|f(r, k, t) for r = 0, k ∈ (0, −Q) and evolution time 200fs.
The electric field is 0, 6kV/cm and 12kV/cm.

are associated with the memory character of the equation and the fact that the
long time limit of the kernel does not recover the semiclassical delta function [6].
At the phonon threshold, |k|2  600 the solutions show a theoretically expected
discontinuity [6].

The solution of (2) has been investigated for r = 0, along k, the direction of
the applied field, and for k = 0 along r, the direction normal to the electric field.
For zero field the solutions kf(r = 0, k, t) versus k2 and rf(r, k = 0, t) versus r2

must coincide due to the symmetry of the task. This condition has been used to
test the numerical approach. Figure 2 compares the corresponding solutions for
100 and 200 femtoseconds evolution time. The electric field introduces important
effects in the quantum kinetics. Figure 3 compares the 200fs solutions as a
function of k ∈ (0,−Q) for different positive values of the electric force F .
The first replica peaks are shifted to the left by the increasing electric field.
The solution in the semiclassically forbidden region, above the initial condition,
demonstrates enhancement of the electron population with the growth of the
field. This effects can be associated with the structure of the S1 term in the
kernel. The cosine has a significant contribution to the solution if the pre factor
of (t′ − t′′) in (3) is around zero. For states below the initial condition the energy
of the field is added to the phonon energy. Accordingly the solution behaves
as in presence of a phonon with energy higher than �ω; the distance between
the first replica and the initial condition increases. For states above the initial
condition the energy of the field reduces the phonon energy and thus the electron
population in the vicinity of the initial condition increases.
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Fig. 4. Solutions kf(r, k, t) for r = 0, k ∈ (0, Q) and evolution time
200fs. The electric field is 0, 6kV/cm and 12kV/cm.
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Fig. 5. Solutions rf(r, k, t) for k = 0, r ∈ (0, Q) and evolution time
200fs. The electric field is 0, 6kV/cm and 12kV/cm.

Just the opposite effects must appear in the region of positive k values. This
is demonstrated on Figure 4. The first replicas peaks are shifted to the right and
there is no enhancement of the electron population above the initial condition.

As should be expected, in the direction normal to the field there is no shift
in the replicas as seen from Figure 5.
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A comparison of the first replicas and the main peaks under the initial con-
dition on figures 3, 4 and 5 shows that the field has a pronounced influence on
the effects of the collisional broadening and the retardation.

We conclude that the intra collisional field effect is well demonstrated in
the early time evolution of the electron-phonon relaxation. The electric field
causes shift in the replicas, population of the semiclassically forbidden regions
and influences the broadening and retardation of the solution.
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