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Abstract

Greens function Monte Carlo and variational methods are used to
study the properties of the second layer “He adsorbed on a smooth
graphite substrate. Realistic He-He and He-carbon interactions are
used in the simulation. The densities at which condensation and crys-
talization occur are determined and compared with experiment.

1 Introduction

The work described in this paper is a continuation of our earlier work on
helium films on graphite!, which focused on a detailed simulation study of
a first layer of “He on a smooth graphite substrate. We have extended that
work and can give a preliminary report on the second layer on graphite.
There is a wealth of experimental data on *He films on graphite.234 A
good deal of attention has been focused on the appearance of commensurate
solid layers. However our interests are different; we are most interested
in the condensation into a fluid phase and the crystalization of the layer
into a incommensurate solid. The appearance of a liquid phase should be
closely related to the onset of superfluidity®, while the crystalization should
determine the upper boundary in density for the superfluid phase®. From
a methodological point of view we present results which will allow us to
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compare a common approximation for second layer calculations with the
results of a more realistic calculation. The approximation that has been
widely used®” to study the second and higher layers of *He on graphite and
other substrates is to treat one or more of the underlying layers as being
the source of an effective potential for the other layers. For example the
first layer of helium atoms is thought of as being the source of an effective
potential for the atoms in the second layer. In this approach the first layer
atoms do not play a dynamic or active role in determining the properties of
the second layer, their degrees of freedom are suppressed and are replaced
by an effective single particle potential. We call this type of approximation
a passive effective potential (PEP) approximation. This approximation can
be compared with the results of calculations in which all the degrees of
freedom of both first and second layers are taken into account; i.e. the
atoms in the first layer now play a full active role in the calculation of the
properties of the second layer. We call this an active layer (AL) calculation.
Clearly an AL calculation will involve many more degrees of freedom than
the corresponding PEP calculation and will be more time consuming. One
of the aims of our work on the second layer is to understand whether there
are important differences in the results of these two types of calculation.
We also want to understand how the binding energy of the second layer
compares with that of the first layer. The first layer is confined to a very
narrow density profile, perpendicular to the carbon substrate. The second
layer profile is about 50% wider! and thus the motion of the atoms is that
much closer to 3D motion; we expect that the second layer will be more
tightly bound.

In Section II we give the results of both variational and exact Green’s
Function Monte Carlo (GFMC) calculations for the second layer using a
PEP approximation. We compare the binding energy of the second layer
with that of the first layer. In Section III we give the results of a prelimi-
nary AL calculation and compare these results with the corresponding PEP
calculation.

There have recently been published results from a path integral simulation®
of the second layer using a periodic PEP. It is unfortunately difficult to make
a precise comparison of our results to those of this reference. The PEP used
is different, and the Aziz potential for the helium interactions is also differ-
ent. A qualitative comparison is made at the end of the next section.
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2 A passive effective potential approximation
The Hamiltonian for the second layer in the PEP approximation is
H=T+V(He,He) + V(He,S) (1)

Here T is the kinetic energy and V (He, He) the potential energy of N helium
atoms. The potential V(He, S) is the sum of the helium carbon potential,
coming from the graphite substrate, and the potential arising from the first
layer of helium atoms. The helium-helium potential is chosen to be the
Aziz 1% potential. We have used this in two previous studies and we can
thus make immediate comparisons with two dimensional (2D) helium!? and
the first layer on graphite!. The helium carbon potential is the same as
that in our first layer work!. The effective potential for the second layer is
computed by assuming an Aziz I potential between a second layer atom and
the atoms in the first layer. This potential is then averaged over the atoms
in the first layer by assuming a uniform density and integrating through the
density profile of the first layer. We chose the density of the first layer to be
0.116 A—2. This is very close to the density at which the first layer reaches
completion and the second layer starts to form.

We have carried out both variational and GFMC calculations. The op-
timized variational function was used as the importance function for the
GFMC calculation. The variational function has the same form as those
used in our first layer work;

Up = ;9305. (2)

In the solid phase an additional factor ®¢ is used. ®; is a standard Jastrow
factor, with two body correlations of the Macmillan form. &3 is a triplet
correlation function and ®g is a product of single particle orbitals which
depend only on z, the coordinate perpendicular to the substrate. All these
function are for N helium atoms contained in a rectangular simulation box
and free to move in the z direction. The value of N ranged from 80 to
96. The additional factor ®¢ in the solid phase, is the product of Gaussian
localization factors with a parameter ¢ to define the degree of localization.
The explicit forms of @ 7, 3, 5 and P are given in reference 1. The single
particle orbitals in the factor &g are taken to be the ground state wave
function of a helium atom moving in the PEP we have previously described.
This potential is shown in figure 1, where it is compared with the helium
carbon potential which binds the first layer to the graphite substrate. This
second layer potential has a minimum of approximately -50K. The helium
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carbon potential contributes about -25K and the remainder comes from the
PEP of the first layer. Table I shows the values of the variational parameters
as a function of density in both the fluid and solid phases.

Table IT shows the variational and GFMC energies at four liquid densities
and three solid densities of the second layer. We define the binding energy
of the second layer as the total energy per particle minus the energy of a
single helium atom in the PEP; this has a value of -29.02 K. These energies
are shown in the fourth column. The fifth column gives the energies of
the first layer at the same areal densities. These were obtained from our
fitted equations of state!. We see that the second layer is, as we expect,
significantly more bound. The increase in the binding energy ranges from
6% at the lowest liquid density to 30% at the highest solid density. As we
have pointed out this comes about because the second layer atoms have
a much wider density profile, in the z direction, than those in the first
layer. The data in Table II suggest that the second layer energy will have a
minimum between 0.0426 A=2 and 0.0530 A=2. Thus the density at which
the second layer condenses to form a liquid phase will be somewhat above
that found for the first layer, 0.0443 A=2. The GFMC calculations show
that the second layer solid phase has a lower energy at 0.08 atoms A2
At 0.07 atoms A~2 the fluid and solid phases have almost the same GFMC
energies. We conclude that the second layer crystalizes at a density close to
0.08 atoms A2 and that at the density 0.07 A=2 it is in a two phase region
where the solid coexists with the liquid phase. This result is in agreement
with the experimental neutron scattering data''. It is important to notice
that the variational results predict that the second layer will have crystalized
by a density of 0.07 A~2. This is not in agreement with experiment!!.
Superfluidity has been observed® in the second layer in the density range
0.05A72 to 0.07A—2. The upper density is clearly in the region where we
believe the film has entered a two phase region which may well suppress the
superfluid phase. We have recently calculated an additional value for the
energy at a density of 0.0485 A~2. The value we find is -30.03 &+ 0.02 K.
A fit to our energy values as a function of density yield a minimum value
for the binding energy of -3.03 & .03 K at a density of 0.0483 A~2. We
see that the binding energy of the second layer is about 0.1 K (10%) lower
than that of the first layer. Moreover the density at which a uniform fluid
phase first forms, 0.0483 A2, is appreciably higher than the corresponding
density for the first layer (0.0426 A=2). Our value is now quite close to the
value suggested by the superfluidity experiments®. Further refinements in
the model of the second layer may well bring the condensation temperature
into agreement with experimental value.
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The last column of Table IT shows the energies of the 2D system at
the same areal density. These energies were again obtained from our fitted
equations of state!?. The difference in energy between the second layer and
the 2D system are significant. Ranging from 10%, at the lowest density,
to 40% at the highest. In our previous work we suggested that the 2D
equation of state might be a good approximation to use to calculate the
chemical potential of the second layer. This approximation has been used
fairly frequently®’. Our new calculations throw some doubt on this method.
However we need more data at other densities in order to see how well this
approximation works.

In a recent paper Pierce and Manousakis®, using path integral tech-
niques, have located the condensation density and the density at which the
incommensurate crystal forms. Their condensation density is 0.048 A=2 and
the crystalization density is 0.074 A=2. We have already pointed out that
their model for the second layer differs from ours in that the PEP potential is
periodic and that the Aziz potential is also different. The condensation den-
sity is consistant with our data while the crystalization density is somewhat
lower than ours.

3 An active second layer calculation

In this section we present some preliminary results of a calculation that
removes the PEP approximation and treats both the first and second layers
on an equal footing. We maintain the approximation of a smooth carbon
substrate; thus each atom in the first and second layers sees a helium-carbon
potential which is a function of z alone. The Hamiltonian for the system is

H=H,+ Hy+ Vo (3)

Here H; is the Hamiltonian for the atoms in the first layer and is given by

H, =T+ Vi1 + Vic (4)

where 77 is the kinetic energy of the atoms in the first layer, Vj; is the
Aziz interaction for these atoms and Vi¢ is the helium carbon potential.
The Hamiltonian for the second layer Ho has the same form as H;. The
interaction potential between the layers is Vi2 and is the sum of the two
body interactions between the atoms in the first layer and those in the
second layers. In our calculations, we have assumed the atoms belong to
either to the first or second layers. This will be an accurate approximation
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as long as there are very few exchanges between the atoms in these layers.
Since the first layer is a very dense triangular solid it strongly repels the
second layer atoms and exchanges are rare. It is known experimentally that
the first layer density increases by about 5% as the density of the second layer
increases from that of a dilute gas to the highest density of 0.08 A~2. We
can readily allow for this effect by maintaining the equality of the chemical
potentials of the two layers. In our preliminary work we have not allowed
for this small correction.

Our variational wave function for the two layer calculation has the form

W = ol ual ®

Here \I/(Tl ) stands for a trial function of the form given by Eqn (2). We note

that in ‘I'(Tl ) the orbitals in the factor @g) are single particle functions taken
to be the ground state of a helium atom in the helium carbon potential for
the first layer. In \IJ&? ) the single particle orbitals are the ground state of a
helium atom in a potential which is the sum of the helium carbon potential
and the PEP provided by the first layer. While we have abandoned the PEP
approximation in the Hamiltonian, Eqn (3), we have used it to define the
orbitals in the trial wave function, \IJ&? ). The factor @Sm) is a Jastrow factor,
of the Macmillan form, which correlates the particles in the first layer with
those in the second layer. Thus each particle in the second layer is explicitly
correlated with each particles in the first layer.

We have carried out variational calculations with a first layer at a density
of 0.116 A=2 (132 atoms) and the second layer at a density of 0.0421 A2
(48 atoms). The wave function given by Eq.(5) was optimized to yield a
total energy of -95.89 £ 0.02 K. We can compare this with a weighted sum
of the energy of the first layer and the energy of the second layer. The
weights being given by the fraction of the total number of atoms that are
in each of these layers. This weighted sum give an energy of -96.92 + 0.06
K. These energies are about 1K, or 1%, apart. This suggests that the PEP
approximation for the second layer is quite accurate. In figure 2 we show
the density profile in z direction for both layers. In this profile there are
132 atoms in the first layer and 48 in the second and the profile has been
normalized to unity. This figure clearly shows that there is essentially zero
overlap between these layers.

How does the binding energy of the second layer change when we compare
the results of the PEP calculation with the AL calculation? The binding
energy in the PEP calculation was defined as the total energy per parti-
cle minus the binding energy of a single particle in the PEP. We use the
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analogous definition for the AL calculation. This single particle energy is
now the difference in energy of the first layer with a single particle in the
second layer and the energy of the first layer alone. Both energies are large
because they contain the binding energy of NV particles in the first layer to
the carbon substrate. If we run a simulation with 30 particles in the first
layer then this contribution is 30 times the single particle energy in the first
layer, -140 K approximately. We are thus faced with the difficulty of sub-
stracting two numbers of the order of 4,200 K. To overcome this difficulty
we obtain our single particle energy by correlated sampling. In this method
the energy estimators for the first layer with a single particle in the second
layer and for the first layer alone are both evaluated for each configuration
in the MC simulation and then the difference is taken. The binding energy
is then the average of these differences over the MC run. Our preliminary
calculations using this method suggest that the second layer binding energy
may be significantly reduced in magnitude.

4 Conclusions

The calculations we have carried out for the second layer of *He on graphite
show signifigant changes in both the condensation and crystalization den-
sities when compared with the first layer values. Both densities are close
to those suggested by the observation of superflow in the second layer®. A
more realistic model of the second layer in which the first layer is treated
as an active substrate suggest that the commonly used effective potential
approximation requires careful examination. We plan to extend these cal-
culations to cover more densities in both the fluid and the solid phases and
thus obtain an accurate equation of state for the second layer.
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Figure Captions

Fig. 1 The effective potential for atoms in the second layer (- - - - - -
- - - -) compared with the helium carbon potential for atoms in the first
layer (). The second layer PEP was calculated as described in
the text. It has a minimum of approximately -50 K at a position of 5.6 A
above the carbon substrate. The helium carbon potential is -180 K deep at
a distance 2.8 A above the substrate.

Fig. 2 The density profile from a two layer calculation. The coordinate
z is normal to the carbon substrate. There are 132 atoms in the first layer
and 48 in the second layer. The profile has been normalized to unity.
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p(A72) [ b(A) | ¢ [M(A4%)[s(A) |wi(A) | re(A)

0.0426 ¢|3.093 | - -8.50 [2.045|1.278 | 6.39
0.0536 £|3.093 | - -2.61 [2.045|1.278 | 6.39
0.0700 ¢|3.093 | - -1.96 [2.045|1.278 | 6.39
0.0800 ¢ |3.093| - -1.96 [2.045|1.278 | 6.39

0.0700 s | 2.888 | 0.268 | -6.56 |2.096 | 12.78 | 7.256
0.0800 s | 2.837 | 0.421 | -6.56 |2.096 | 12.78 | 7.256
0.0850 s | 2.863 | 0.459 | -6.56 |2.096 | 12.78 | 7.256

Table 1: The parameters, for the optimized wave functions for the liquid (£),
and solid (s) phases of the film. The second column gives the value of b in
the Macmillan pseudo potential and c in the third column is the localization
parameter in the Gaussian orbitals. The parameters A, s, w and r define the
triplet-correlation.
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p(A™2) Eyar (°K) Egruc(°K) Ey(K) Ei(°K) Eyp(°K)
0.0426 £]-29.551 + 0.009 [-29.982 + 0.007 | -0.96 + 0.01 |-0.90 £+ 0.01 -0.83
0.0536 £]-29.076 £+ 0.002| -29.98 4+ 0.01 |-0.96 4+ 0.01 |-0.79 + 0.01 -0.71
0.0700 2| -26.94 £+ 0.02 -29.03 £ 0.02 |-0.01 £ 0.02 0.32 -0.56
0.0800 2| -24.72 £+ 0.02 -27.68 + 0.02 | 1.34 + 0.02 1.88 2.37
0.0700 s | -28.227 £ 0.008 | -29.01 £+ 0.02 | 0.01 £ 0.02 0.39 0.55
0.0800 s| -27.16 £+ 0.02 -27.99 + 0.01 | 1.03 £ 0.01 1.52 1.85
0.0850 s| -26.27 £+ 0.03 -27.24 + 0.02 | 1.78 £ 0.02 2.49 2.90

Table 2: E,, and Eggrpc are the values of the variational and GFMC
energies for the second layer respectively. The fourth column, Fs, gives the
values of the binding energy, Eo = Egryme - Ep. The fifth column gives,
for comparrison, the binding energy of the first layer("!) and the last column
gives the energy of the 2D system!. All energies are per particle.



