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Abstract

Recently, Percus derived probabilities and distributions for parllel, i.i.d. random
sequences of integers. This was accomplished by considering s given bit locations
in each random variable (represented as a predetermined number of bits) in each
sequence. These s bits were used to create a new binary sequence whose expected
behavior can be analyzed. Based upon Percus’ work, an empirical test for parallel
pseudo-random number generators has been devised. For each generator, parallel
sequences of various lengths are considered and analyzed as proposed by Percus and
the results are statistically compared to the expected behavior for truly random se-
quences. A variety of parallel pseudo-random number generators from the literature
are studied and the usefulness of the new empirical test is discussed.

1 Introduction

Computer simulations use random variables to model the probability distri-
bution functions important to the calculations. The random variables are re-
placed by values, pseudo-random numbers, provided by deterministic algo-
rithms whose properties mimic those of a truly random sequence [1]. A par-
allel pseudo-random number generator (PRNG) is used to produce multiple
sequences of pseudo-random numbers for parallel simulations [2-8].

To avoid introducing unwanted correlations, sequences of pseudo-random num-
bers must mimic the properties of the truly random sequences that are most
important to the simulations. This is a well-studied topic for single sequences
of random variables[1]. However, in the case of parallel sequences less is un-
derstood about the type of correlations that could lead to poor results in use.
Theoretical tests can be developed which consider the properties of the whole
period of a specific generator [6]. This does not necessarily predict the behav-
ior of subsets, i.e. samples of smaller size than the whole period, that are used

Preprint submitted to Elsevier Preprint 27 January 2000



in actual simulations. As the performance in theoretical tests is no guarantee,
but only an indicator of what we may expect in practice, empirical testing of
generators is a necessity [7].

Some theoretical tests have been developed for specific PRNG’s [6,9]. Our goal
was to develop and implement a general empirical test that can be applied to
a wide range of PRNG’s. The empirical test described here is based upon the
theoretical investigations of Percus [10].

Section 2 briefly reviews Percus’s theory on the properties of parallel sequences
of truly random numbers. The translation of the theory into an empirical
test, the parallel sequence test, is described in Section 3. An outline of the
implementation of the test as a distributed calculation is given in Section 4.
Finally, Section 5 discusses the application of the parallel sequence test to
several published PRNG’s. We conclude that the test is useful in predicting
correlations that affect a distributed or parallel simulation.

2 Theoretical Basis of the Parallel Sequence Test

Consider 2 sequences of random variables

Xl(l)’ Q(I)a"'aXl(l)
X](-Q)’ 2(2)’ e ’Xl(Q) , (1)

where the X ](-k) are integers represented by an arbitrary, but fixed number of
bits and [ is the length of the sequence. Consider the set I = {iy,...,4s} of
indices of bit locations in each integer, where the total number of bit locations
of interest is s. These bit locations do not have to be consecutive. A new binary
sequence {Y; | 1 < j <[} is created such that

1if X equals XPfor 4y, -+, i, € T
Y, = A (2)

0 otherwise

Assume each bit of X J(-k) has the probability of 1/2 to be 0 or 1. If the two
sequences of (1) are independent, {Y;} would be a random number sequence
with the probability P{Y; =1} =27°.

Let ¢ = 1 — p, and P(r,1) be the probability of having r ones in succes-
sion in {Y;}, where (1 < r < [). Percus [10] derived that the probability,



P{length of longest run > r} is [11]

P(r,l)=1=3(=1)/(¢p") (l _jjr) +pT§(—1)j(qu)j (l A 1)7«) (3)

J

It is challenging to compute P(r,l) with (3). Alternatively, let

a=p'(1-p) (4)

It can be proved [10] that the equation

£-1-ag™' =0 (5)

has at least one positive real root. Denote the smallest one as &, . Then P(r,!)
has the following estimate

— 1 _ 1_p€0 60_1 r 1+2
Pl =1 (1—p)fo7"+1—7“§0+91—]0p (6)

where |  |< 1. The root & can be found either by direct solution of the
trinomial equation following Gauss’ method, or by application of Lagrange’s
series.

Percus’s analysis can be extended to the case of ¢ parallel sequences

1 1 1
X® x® ... x®

Y ?

x® x@, ..., x®

3 Y

xP, xP, o x.
A binary sequence {Y; | 1 < j <[} can be defined such that

1 if at least w of the {X](-k)}}c:1 are equal for all 4,---,i, € I
Y= (7)

0 otherwise

where (max(1,t — 2°%) < w < t). Then the probability p is

p=r =11 =3 () g - 30 ®)

j=w \J



and the analysis continues as in (3).

3 The Parallel Sequence Test

The basis of the empirical test is to consider many groups of pseudo-random
number sequences derived from a particular PRNG. The number of sequences,
t, tested in each group can be two or more. Each group of sequences is con-
verted to a new binary sequence with (2), if ¢ = 2 or (7), if ¢ > 3. The longest
run of 1’s in each new binary sequence is determined. A chi-square statis-
tic, defined below, is calculated for each group. The values of the chi-square
statistic are used in a Kolmogorov-Smirnov test to judge whether the PRNG
produces sequences whose properties mimic those of a truly random sequence.

3.1 Calculate Longest Runs

The set of bit locations, I, is chosen prior to the test and are fixed throughout
a single replication of the test. The number of classes, N, representing the
distribution of possible longest runs depends upon the number of bits con-
sidered. Table 1 illustrates the observed distributions of probabilities, p, for
a longest run of a random binary sequence when ¢ = 2, [, the length of the
sequence = 1,000,000 and 1 < s < 6 bit locations are examined. It can be
seen that N, becomes smaller as the number of bits to be tested increases. To
be meaningful, s should be chosen so that [ x p is greater than 5.

From each group of sequences using the s bits, a new binary sequence

YR VIR LI (1< <Dy 1< k< Ly,) (9)

is obtained from (2) if ¢t = 2 or (7) if ¢ > 3 . Each binary sequence is formed
from independent, non-overlapping sequences. L, is the number of groups used
to form the x? statistic and L, is the maximum number of x? values used in

the Kolmogorov-Smirnov test. The longest run of 1’s in each sequence of (9)
(k)

is determined and is denoted by r;

3.2  Forming the Chi-square Statistic

Longest runs exceeding a length of 100 values are unlikely and are grouped
together in the statistical analysis. In general, we have 0 < r§k) < 100. Let n;
be integers where (1 < i < N.) , and ng = 0, ny, < 101, n,—; < n; . There



Longest Number of Bits
Run 1 2 3 4 5 6
1 - - - - -
2 - - - - - 0.023
3 - - - - 0.397 | 0.920
4 - - - 0.409 | 0.575 | 0.056
5 - - 0.036 | 0.537 | 0.028 | 0.001
6 - - 0.623 | 0.051 | 0.001 -
7 - - 0.290 | 0.003 - -
8 - 0.057 | 0.044 - - -
9 - 0.432 | 0.006 - - -
10 - 0.347 | 0.001 - - -
11 - 0.120 - - - -
12 - 0.033 - - - -
13 - 0.008 - - - -
14 - 0.002 - - - -
15 - 0.001 - - - -
16 0.022 - - - - -
17 0.126 - - - - -
18 0.237 - - - - -
19 0.235 - - - - -
20 0.167 - - - - -
21 0.100 - - - - -
22 0.055 - - - - -
23 0.028 - - - - -
24 0.015 - - - - -
25 0.007 - - - - -
26 0.004 - - - - -
27 - - - - - -

Table 1
The distributions of lengths of longest runs in binary sequences of length 1,000,000
with the number of bits considered varying from 1 to 6.



are N, mutual exclusive classes [n;_1,n;), (1 < i < N.). The probability that
the longest run, r](-k), falls in the mutually exclusive class, [n; 1,7n;) can be
obtained from P(r,l), (4) - (6), the probability that a longest run exceeds

length r. That is,

P{ri® € [ni_1,mi)} = P(ni_y, 1) — P(ng, 1) (10)
The expected number of longest runs falling into an interval, [ x P{r](-k) €
[ni_1,m;)} > 5, to yield a good approximation to the asymptotic chi square

distribution. Let Z*) be the number of r](-k), (1<j<Ly),(1<k< L) such
that n;,_; < rj(-k) <n,; , then

Vi = X2 = Z ) (11)

where e; = [ * P{T§k) € [ni—1,n;)}. Vi is asymptotically chi-square distributed
with N, — 1 degrees of freedom, V; ~ x%,__;, see [12].

3.8 Performing the Kolmogorov-Smirnov Test

Each time a new value of x? is calculated, it is added to the set, Vi,---,V,,
obtained from (11). The V; are sorted in ascending order and denoted by
Vi < -+ <V, . A Kolmogorov-Smirnov test is performed on the values and
the quantities K and K are formed:

K = v (1 - Fa050) (12)

i<j<q \ ¢
K, = /¢ max (FX?Vcl(le) — 1) (13)

1<jqlek q

When ¢ is large, the distribution of K; and K is given by

2t
Fis(t) =1— ¢ (1 - —) , t>0, (14)

The distribution functions (14) can be used to transform the sequences of real-
izations of K and K into sequences of numbers { Fx+(K;)} and {F- (K)},



1 < g < Lys, which are uniformly distributed on [0,1]. For any integer go much
smaller than Ly, e.g. go < Lys, if ¢ > go such that

| {Fr+(K)} —0.5| > d% (15)

for any positive number d < 50, we have (50+d) percent of confidence to reject
the hypothesis that any ¢ sequences of pseudo-random variables generated by
the PRNG are independent.

4 TImplementation of the Empirical Test

A prototype of the parallel sequence test was implemented and run on a cluster
of workstations distributed across a network. The test was implemented in
the C language on a UNIX operating system environment with the message
passing facility, DP [13], installed. DP is a library of process management and
communication tools for facilitating writing portable distributed programs on
MIMD systems. It supports dynamic process creation and message passing
with a variety of semantics.

To perform the test upon a PRNG, three modules were created, the test mod-
ule, the provider module and the configuration module. The test module is a
executable program consisting of all of the major functionality for testing a
particular PRNG. The provider module is another executable program pro-
viding the test module with pseudo-random variables generated by the specific
PRNG to be tested. The configuration module is a text file with the parame-
ters for a test.

4.1 The Provider Module

The provider module consists of one or more PRNG’s to be tested and the
interface between the PRNG’s and the test module. The interface transfers
pseudo-random variables from the PRNG specified in the configuration module
to the test module. It is hence called the provider while the test module acts as
a consumer of pseudo-random variables. The program begins execution when
a process running the test module requests pseudo- random variables. The
provider module can be maintained by users of the testing software without
the need to know the details of the test module or the DP facility.



4.2  The Test Module

The test module uses the DP library to distribute processes to carry out the
testing across a network of workstations. A primary process on the initial host
begins the execution of test module processes on the other network hosts. It
collects the longest run statistics, calculates the x? values and performs the
Kolmogorov-Smirnov test.

Each host on the network executes two processes, one that provides the needed
pseudo-random variables and another that carries out the details of the test.
That is, the distributed test module process obtains the ¢ sequences of random
variables, produces the new binary sequence and calculates the longest run of
the new sequence. The DP message passing facilities are used to communicate
with the primary process.

4.3 The Configuration Module

The configuration module is used to set the parameters needed by the test
and the provider modules. The parameters include the PRNG to be tested
(multiple PRNG’s can be contained in the provider module), the bit locations
to be tested, the length of a sequence [ , the number of longest runs for a
chi-square test L, , the total number of x? values to be observed for the
Kolmogorov-Smirnov test, Ly, , and the number of sequences in a group ¢ .
The configuration module can be modified any time before performing the
test without having to recreate the executable programs.

5 Results of Applying the Parallel Sequence test to Specific Gen-
erators

5.1 R250

The R250 pseudo-random number generator [14] as implemented by W. L.
Maier [15] was used. Since 16 R250 streams can be obtained from the generator
at the same time, two of them were randomly chosen for the test.

The test was repeated four times and the results are shown in Table 2, for ¢ =
150 replications. Only one of the experiments exhibited acceptable behavior.
The other 3 experiments showed poorer performance; the Fi+ (K, ;'E) were out
of the range [15%, 85%)]. According to (15), we have a 85% confidence to reject



Generators R250 Nested Weyl SNWS
q 150 10 15
run Kf | K; | K| K; | Kf|K;
(1) 47.8 | 37.3 | 0.0 100 0.0 | 100
(2) 85.5 | 1.6 | 0.0 100 0.0 | 100
(3) 89.6 | 3.4
(4) 98.3 | 14.8

Table 2

The quantity | {Fg+ (K;t)} -0.5 | obtained from running the parallel sequence
test for the pseudo-random number generators R250, the nested Weyl sequence and
the shuffled nested Weyl sequence (SNWS).

R250. In practice, R250 was found to introduce correlations into some classes
of parallel simulations [16].

5.2 Nested Weyl Sequence

The nested Weyl sequence (NWS) is a natural extension of the Weyl sequence
[17] and is defined as x, = {n{na}}, where {} indicates the fractional part of
the enclosed number, within the precision of the computer used. When used
as a PRNG, the k' sequence is defined by

2 = {k{n{na}}} (16)

Because our empirical test only accepts integers, the above formula was re-
placed by

XP = [2°29] = [2°°{k{n{na}}}] (17)

where |y] is the floor of y, and s is an integer such that x%’“) are converted
to integers in [0, 2%0). In our tests, o = V2, sy was 4 and all bits in the whole
number part were tested. Two experiments were done and for ¢ = 10 (larger
values of ¢ showed no improvement), Table 2, the F+ (K, qi) in each experiment
are outside of the range [1%, 99%)]. Hence we have 99% of confidence to reject
it. This result was not unexpected since previous work had found the generator
correlated [18].



5.8 Shuffled Nested Weyl Sequence

This generator was an attempt to create a PRNG with better properties than
the nested Weyl sequence [18]. An integer M >> 1 is selected and a sequence
of processor numbers v, is given as

v = M{n{na}} + % (18)

The shuffled nested Weyl sequence is defined by x, = {v,{v,a}} . To create
multiple sequences, the ky, sequence is defined by

2 = {k{va{ma}}} (19)

and (17) is modified to

XP = |20 | = |2 {k{wn{vna}}}] (20)

In this case, sy was 4, @ = v/2 and M = 1234567. All bits in the whole
number part are tested. Two experiments were done with ¢ = 15, Table 2.

The Fg=(K;) in each experiment are outside of [1%,99%]. Hence we have
99% of confidence to reject the PRNG.

5.4 Ezxplicit Inversive Congruential Method
When used as an individual RNG, the Explicit Inversive Congruential Method
[5,7,19] is defined as

Xp,=an+c modp forn>0 (21)
where p is a prime and Z = 27! is the inverse of the element z in the finite

field F), .

As a PRNG, a different pair of ¢ and c is assigned for each different pseudo-
random sequence. So the generator for the k™ process is given by

X® =gnFe modp forn>0 (22)

n

The pairs of a; and ¢, should be selected properly such that cyag, c1dy, - - -,
cn—1an—1 € F, are distinct.
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run ag bits tested | q | K | K,

(1) || 2027812808 | 0x30000000 | 60 | 0.7 | 99.9
(3) | 1323257245 | 0x30000000 | 60 | 8.7 | 94.0
(4) || 764261123 | 0x38000000 | 60 | 12.9 | 96.3

Table 3
The parallel sequence test results for the Explicit Inversive Congruential Generator

The version of the generator used is based on the implementation by Otmar
Lendl [20] with p = 2147483647 = 23! — 1. Three experiments were performed.
Table 3 lists the values of the multipliers ao (a1 = ag) used in each experiment
and the number of replications. The additives ¢y and ¢; were (5 * m) and
(5% m + 91) respectively for the m*® pair of sequences. The 2 most significant
bits (bits 28 and bit 29) in 3 experiments and the 3 most significant bits (bits
27 - 29) in the other were tested. In all experiments, the Fy=(K7F) have the
trend to go out of the range of [6%,87%]. We have 87% confidence to reject
it as a PRNG.

5.5 Split Multiplicative Linear Congruential Generator

The generator is based on L'Ecuyer’s implementation [21] of a combination
generator using two different linear congruential generators:

Xipi=aX;+c modp j>0 (23)

The (a1, ag, ¢1, o, p) are chosen to yield the maximum period. Then the pe-
riod of the sequence is divided up into N subsequences whose starting points
are far apart. Each process using the generator is assigned a non-overlapping
supsequence with a period of [ = p/N. The structure of this generator was
analyzed in [22].

Three experiments were performed. One of the experiments tested the 3 most
significant bits (mask 0x70000000) and the others tested the 4 most significant
bits (mask 0x78000000). The results of each experiment are shown in Table
4. The Fg+(K7) are in the range of [40%,60%)]. We can say this generator
passes our test.

5.6 SUN Workstation C library function, srand48

Two pseudorandom number streams were formed from srand48 [23], one con-
sists of all of its odd terms {X;(k) = srand48(2k — 1) | k = 1,2,-} and the

11



Generators Split Combination Srand48
run q bits K;’ K, | q bits K;’ K,
(1) 150 | 0x70000000 | 42.9 | 63.3 || 60 | 0x3C000000 | 0.3 | 99.0
(2) 60 | 0x78000000 | 57.0 | 59.7 || 60 | 0x78000000 | 8.1 | 94.3
(3) 60 | 0x78000000 | 61.4 | 47.9
Table 4

The parallel sequence test results for the Split Multiplicative Linear Congruential
Combination geneator and Srand48

other consists of the even terms {Xy(k) = srand48(2k) | k = 1,2,-}. Each
stream is further split into sequences of length of 1,000,000. One sequence from
each stream in the corresponding order is chosen to form a pair of sequences.

Two experiments were performed and described in Table 4. One experiment
examined bits 26— 29 and in the other, bits 27— 30 were tested. The F+(K7)
in each experiment for ¢ = 60 were outside the interval [10%, 90%]. Hence we
have 90% of confidence to reject it. The generator srand48 was not claimed
to be a PRNG [23]; so it is not surprising that it fails the empirical test.

6 Conclusions

We present a new empirical test for PRNG’s based on Percus’ theory. It is
a generic test that can be used to study both bit stream generators and full
word size generators. The test was implemented on a distributed network and
used to study several published PRNG. The results confirmed the expectation
that the nested Weyl generator and the C library function, srand48, would fail
the test. Both of these generators have well-documented shortcomings, even
when used as serial pseudorandom number generators and also have parallel
correlations that the parallel sequence test detects. The results of the applying
the parallel sequence test to R250 is also consistent with published reports.
Researchers have reported both successes and failures using it in parallel sim-
ulations.

The failure of the shuffled, nested Weyl generator and the explicit inversive
congruential method were not anticipated and are under further investigation.
Finally, multiplicative congruential generators are known to have many types
of serial correlations [24], [25]. However, when used as parallel sequences, the
most significant bits do not exhibit across sequence correlations as tested by
the parallel sequence test. The parallel sequence test appears to predict cor-
relations that are important in some classes of simulations and should be a
useful tool in examining new parallel pseudo-random number generators.
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