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Abstract
Greens Function Monte Carlo and variational methods are used to calculate the prop-
erties of a monolayer of helium on a smooth graphite substrate. We find that in all respects
these properties are very close to those of two-dimensional helium. There are small dif-
ferences in the equations of state of the two systems. We use these results to show how
accurate chemical potentials can be constructed for particles in the second and third layers
and we compute the densities at which these layers will begin to form. These densities are
in good agreement with the experimental values.
I. Introduction
Helium four films on graphite substrates have been the subject of many experimen-
tal investigations!. Graphite provides an especially interesting substrate because of the
relatively large areas which exist as well defined crystal surfaces, each with a hexagonal
arrangement of carbon atoms. The following phenomena for the film are well established.
Helium is strongly absorbed and covers the substrate with a tightly bound monolayer.

Upon addition of further helium, additional layers are formed in a well defined manner;?
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seven distinct layers have been observed.? In this simulation study we have focused in
some detail on the properties of the first layer and have used these results to construct a
simple model that allows us to study the formation of the second and third layers. Re-
cently detailed studies of the superfluid properties of the second and third layers have been
published.? Superfluidity has however not been seen in the first, and most tightly bound,
layer. Experimentally, it seems to be well established that there are three distinct density
regimes for the first layer.? At low density a fluid film forms and at higher densities several
commensurate phases exist. Beyond these, as the density increases, there is a third region
in which an incommensurate triangular crystal is formed. The commensurate phases form
because of the regular hexagonal arrangement of the carbon atoms in the substrate. When
the density of the crystalline phase becomes sufficiently large, approximately 0.07 atoms
A~2, the lowest energy state is that of the triangular helium lattice. In this state, the pe-
riodicity of the substrate plays a secondary role. At a density of approximately 0.11 atoms
A2 the system starts to form a second, well defined, layer of helium atoms. These second
layer atoms now see the dense incommensurate first layer as a substrate, modulated by the
now more distant carbon substrate. Again as the density of the second layer is increased
a second incommensurate triangular lattice is formed and at a slightly higher density the

third layer begins to form.?

The first part of our work consisted of a detailed examination of the properties of the
first layer. This layer is very tightly bound to the graphite substrate in a potential whose
mean depth is approximately -180°K. As a result the helium particles are confined within
a profile determined by the ground state wave function ¢, (z). Here z is the coordinate of
a helium atom normal to the plane of the substrate; we show this wave function in figure 1.
Since its width at half height is about 0.7A the helium atoms are essentially confined to a
plane making very limited motion in the z direction. These facts are of course well known
and have lead to the very plausible suggestion that this first layer of helium will behave

like two-dimensional (2-D) helium.* This latter system has been studied® some years ago
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and we thus have available accurate data with which to compare our film results. We are
able to confirm the expectation that the properties of the first layer are very close to those
of the 2D system. There are small, but significant, differences in the equation of state.
The correlation functions and lattice displacements are essentially indistinguishable from
those of the 2D system. We have used these results to make a simple model, based on the
2D equation of state to study the formation of the second and third layers. Both these
layers are also similar to the 2D system. We predict that the second layer will crystallize

just before completion.

There have been several other theoretical studies of helium films on graphite. Review
of this work have been given by Clements et al., Gernath et al.” and Saarela et al.®
Progress has been made both at absolute zero and at finite temperatures. At absolute
zero two methods have been used. The first is an optimized variational method (E/L
HNC) which exploits the hypernetted chain formation (HNC) formalism together with
Euler Lagrange equations to compute the physical properties. It has been shown ° that
this method can give an accurate account of the ground state properties of both the three
dimensional and two dimensional homogeneous helium phases. Density functional theory
10,11,12 has also been applied to helium films. This appears to be a much less successful
when compared with the optimized E/L. HNC approach.® The successful E/L HNC work
has been focused on the more weakly binding substrates; graphite covered with two solid
layers of helium and the alkali metals. The focus of the work reported in this paper is
different; the first two layers of helium on a graphite substrate. Our method are also
different; variational and Greens Function Monte Carlo. This approach is complimentary
to the E/L. HNC method and should provide useful data with which to test that kind of
theory. A point in common in both approaches is the use and testing of a 2D model as an

accurate approximation to describe a thin helium film.

Our first layer study, is based on a simplified helium carbon interaction. We take this

to be the mean interaction averaged across the substrate plane: it is thus a function of z
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alone. This model eliminates the commensurate phases which have experimentally been
studied in detail. However we believe that apart from the elimination of these phases this
model should be accurate enough to allow us to deal with the incommensurate solid phase
and the properties of the second and third layers. In this model we find a homogeneous
fluid at low densities, a two phase coexistence with the triangular solid which increases
significantly in density at the point of completion of the first layer. We have computed
the equations of state of these phases, their correlations functions and have examined the

relation between our model of the helium film and (2D) helium.

In section II we outline our computational methods. Section III describes our data
for the first layer. In section IV we describe methods by which effective potentials can
be constructed for particles in the second and third layers. Section V is devoted to a
discussion of the formation of the second and third layers. Our conclusions are in Section

VL

II. Computational Methods

In this study of the helium film we have used both the variational and exact Green’s
Function Monte Carlo (GFMC) methods. The optimized trial wave functions from the
variational calculations are used as importance functions in the GFMC calculations. We
will not provide a description of either of these methods. Detailed descriptions have been

given in several places.!314

The hamiltonian for our system is given by,

N
H=T+V+> V() (1)

i=1
Here T and V are the kinetic and potential energies of N helium atoms. They are assumed
to interact via a pairwise central potential. For this potential we have chosen that due
to Aziz et.al.,'5 which was used in studies of both bulk 3-dimensional helium!'6 and 2-

dimensional helium.®> The potential energy, V, (z;), is the potential felt by the ith atom

4



due to the smooth carbon substrate. We used a formed developed by Carlos and Cole!”
dreo®\ 2 (o) ° 2 2
o\“i) = \ —/— 1 Jlz\5 1 y 1) 47 3 2
Vi) = (2702 (5) o102 - gta, % 2)

with € = 16.24° K, 0 = 2.74 A, d = 3.37 A and a, = 5.24 A%, ((n,z) is the generalized
Riemann zeta function.'® The coordinate z; is normal to the substrate. We note that V,(z)
is a much stronger potential than the Aziz potential. It has a depth of approximately
—180°K compared with —10°K for the helium-helium potential.

Our variational wave functions, ¥, have the following forms. For the fluid phase

Yr = @ 5;P3Pg, (3)

while for the solid phase

Y = @ ;P3P 5P¢. (4)

The functions appearing on the right hand side of egs (3) and (4) are defined by the

following equations

N
oy =][exp [u(ry)], (5)
i<j

where
u(ri;) = [=1/2(b/riz)™]. (6)
While one will get lower energies for the film using a shadow wave function'® we decided
to use the same form as we had used in our study® of 2D helium so that we could make
accurate comparisons between the two systems. Here b and m are variational parameters
and r;; is the distance between the ith and jth particles. Thus ®; is a Jastrow function with
a MacMillan pseudo-potential. The function ®3 describes correlations between triplets,2°
bo=en (- Y - ot EORC) (7)
with
wij = u(rij) — M€ (rig)ry;
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G(k) = &(rij)ini

i#k

E(rij) = ( - )3;,; ( - )
7)) — s D Wy ;

where \;, s¢, w; and r; are variational parameters. The function ®g describes the local-

and

ization of the atoms near the graphite substrate;

N
s =[] dol). (8)

and ¢, (z;) is the ground state wave function of a single helium atom interacting with
the substrate via the potential V,(z;), equation (2). We have solved this one dimensional
Schodinger equation numerically. The function ¢, (z) is shown in figure 1. It has a sharp
maximum at z= 2.9 A.  The width at half height is approximately 0.7 A. This is about
15% of the interparticle spacing in the film at the equilibrium density. Thus the particles
are very tightly bound to the substrate and have very limited motion in the z direction.
The eigenvalue E, corresponding to ¢, is -140.74° K; we will refer to this as the single
particle “binding energy”, denoted by Ep. We have performed a Monte Carlo calculation
of E,, using ¢, as a trial function and are able to reproduce the eigenvalue to 6 significant
figures.

The function ®g is used only in the solid phase. It describes the localization of the
particles in the neighborhood of the points of a plane triangular lattice.

N
dq = H exp [—c/2(r; — Ry)?] (9)

i=1
Here c is a variational parameter and the R; are the lattice vectors of a triangular lattice.
The lattice spacing is determined by the density of the system. Our simulations were
performed with between 64 and 100 particles. Periodic boundary conditions were used in
the x and y directions. Since the particles are highly localized in the z direction it was

unnecessary to apply periodic boundary conditions in this direction. From our description
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of the strong localization normal to the substrate, we suspect that the film will behave very
like 2-D helium and we therefore include comparisons with 2-D simulations throughout our
analysis. We have chosen to use a two dimensional density to describe the state of the

system; thus our unit of density is particles per A2.

III. The First Layer

In this section we will present the results of our simulation studies for the first layer.
We find, in general, that our results are very close to those of the 2-D system. The only
significant difference is that the helium film has a somewhat larger binding energy. This
difference in binding energy grows larger at higher density. Since any phase transformations
in the first layer depend critically on the energy, we have presented our equation of state
results in some detail in subsection a). Subsection b) gives a very brief summary of our
results for the distribution functions, the density distribution normal to the substrate and

the distribution of displacements from the lattice sites in the solid phase.

(a.) The Equation of State for the First Layer

A variational search was conducted to minimize the energy with respect to the param-
eters in the wave functions. For the fluid, either 64 or 81 particles were used. Simulations
with 100 particles showed no difference within the small statistical errors. For the solid
phase, 80 particles were used. The searches were carried out at five densities in each
phase. These optimized functions were then used as importance functions in our GFMC
simulations. Table I gives the optimum parameters for the fluid and solid. The values of
the parameters in these two tables are close to those found for the wave functions for 2-D
helium.5

The equation of state for the fluid is shown in Figure 2 and in Table II we give the
values of both our variational and GFMC energies. The film energies have been normalized
by subtracting the binding energy of a single helium atom to the substrate. In Figure 2
we also show the equation of state for the 2D system and we see that at all densities they

are close. The small differences increase with density. We have covered a very wide range
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of densities, from zero pressure to a metastable fluid just above the freezing density. In
the last column of Table II we give the difference between the GFMC energies for the film
and the 2D system. At all densities the film has a lower binding energy; 5% lower at the
lowest density; 10% lower at the highest density. The small differences that we find are in
disagreement with the only other variational Monte Carlo data that we are aware of. Using
a different two body pseudo potential and a somewhat different helium carbon potential
Brami et al.?! find at difference in binding energy between the film and the 2D system at a
density 0.04 A—2 of approximately -1.0 K. Their 2D energy is fairly close to ours, -0.9° K,
however their film energy is much deeper -1.9° K. Using their two body pseudo-potential
and the same helium carbon potential we have been unable to reproduce their results. We
find a film energy of -0.73° K, which is close to the value shown in Table II.

The variational and GFMC energies were fitted to polynomials in the density, p, of

the form

2 3
E:EO+B(p;p°) +C(p;”°> (10)

We thus have four parameters to determine E,, p,, B and C, from our five data points. We
have chosen this form because we expect a minimum to occur in the energy as a function
of density p; this minimum occurs at p, with a value of E,, and corresponds to the fluid
in equilibrium under zero pressure. Table III gives these parameters for both sets of data,
variational and GFMC.

In Figure 3 and in Table II we show the numerical values of both our variational and
GFMC work for the triangular solid. The comparison between the data is very similar
to that of the fluid phase. In the figure we compare the GFMC film results with the 2-D
GFMC solid.5 Again we see that the film always has a lower energy and that the difference
increases with increasing density. At the lowest density the difference is 0.12° K; rising to
1.00° K at the highest density.

The data for the solid was fitted to the same polynomial form as equation (10). The

parameters, as determined from our fits, are given in Table III. The two equations of state,
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were used to locate the melting and freezing densities using the Maxwell double tangent
construction. In figure 4, we show the two GFMC equations of state and the double
tangent construction. Table IV gives the values of the melting and freezing densities, for
both the variational and GFMC equations of state. These densities are also given for the

2-D system.

(From the table we see that the melting and freezing densities obtained from our
variational calculations for the film and the 2-D system are very similar. The most striking
feature being that the difference Ap = ps - p; is about twice as large in the film as the
2-D system. However when we examine the two sets of GFMC data we see that this large
difference in Ap is no longer present. Only one small difference remains; there is about
a 3% difference in the freezing densities. It is reasonable to place more weight on the
GFMC data. Differences in the variational data can readily be attributed to differences
in the “goodness” of the two wave functions. We therefore conclude that the melting and
freezing of the incommensurate solid for the film takes place at almost the same densities

found for the 2-D system.

The GFMC melting density for the triangular solid film is 0.0724 particles per A2
Unfortunately the value cannot be directly compared with data on the incommensurate
solid on graphite. This solid phase is in equilibrium with a commensurate phase of some
kind. Hence its transformation density need not be close to the melting density of the
triangular solid on a smooth graphite substrate. Nevertheless it is worth pointing out that
Greywall’s data? suggests that the transition to the incommensurate phase takes place in

the range 0.07 to 0.08 particles per A~2; our transition also lies in this range.

We now suggest a simple explanation for why the film is somewhat more bound than
the 2-D system. Whenever the density of liquid in solid helium decreases the energy of
the system decreases. This is clearly seen for both the film and the 2-D system from
Figures 2 and 3. It is equally true for three dimensional helium. The underlying reason

for this is however somewhat subtle. First we observe that when the density is decreased
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the potential energy becomes less negative. As the density decreases the mean distance
between the particles increases and they move farther out on the attractive tail of the
potential thus decreasing the magnitude of the negative potential energy. Thus the change
in the potential energy will always tend to increase the total energy. However, whenever we
decrease the density the kinetic energy decreases and by a larger amount than the change
in the potential energy. The increase in mean distance between the particles means that
the curvature of the wave function decreases because the function has more space in which
to bend so that it vanishes on the “hard core” of the helium atoms. In both two and three
dimensions the decrease in the kinetic energy, for a given decrease in density, is a good
deal larger than the increase in potential energy. Hence the total energy always decreases.
These observations can provide a simple explanation for the sign of A, the difference in
energy of the film and the 2D system. We only have to notice that at the same areal density
the particles in the film are at a slightly lower total density than those in the 2D system.
This is because the small motion in the z direction means they are on the average further
apart than those in the 2-D system. We thus expect the potential energy to increase and
the kinetic energy to decrease by a larger amount thus leading to negative values for A.

Cole?? evaluated an approximate expression for A, the difference in binding energy of
the film and 2-D helium. Explicitly

A~ LZ%) /d27"g(7")m (11)

2 2r

Here p is the density of the film, (22,) is the expectation value of (z; - z5)? taken with
respect to the product ¢,(z1) ¢, (z2), and g (r) is the two dimensional pair distribution
function at the density p. The integral on the right hand side of this equation is however
difficult to evaluate. This is because the product of the distribution function g (r) and
V/(r)/r is a very rapidly varying function for small r. If one uses tabulated values for g(r),
they are not accurate enough at small r to get the correct sign for A. However a direct

calculation can be performed using configurations from a simulation of the 2D system.
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This leads to values for A with the same sign as those in Tables II but somewhat smaller
in magnitude.

(b.) The Distribution Functions

At each of the five densities in the fluid and solid phases we computed the pair distribu-
tion function, and the density distribution normal to the substrate. The pair distribution
function was defined in terms of the projected positions of the particles onto a plane z
= const. This definition allows an immediate comparison with the same function for 2D
helium. We found that these pair distribution functions are essentially identical with those
found in 2-D helium, at all densities in the fluid and solid phases. Fig. 5 shows this com-
parison at the highest density in the solid. This confirms the expectation that the first
layer of the film on graphite is a very two dimensional system.

The distribution of atoms normal to the substrate is, at all densities, indistinguishable
from the square of the ground state wave function ¢,, see Figure 1. This is not surprising as
the binding energy in the potential well provided by the graphite is very much larger than
the kinetic energy due to the lateral motion and the helium-helium interaction potential.
We conclude that even at the highest densities, where the second layer starts to form, the
density profile of the first layer remains unaltered.

We have also computed the distribution of displacements of the helium atoms from
their sites in the triangular lattice. The displacements in the direction normal to the
substrate are much smaller than those in the plane of the film. These normal displacements
are determined by the width of the ground state wave function ¢,. The distribution of
displacements in the plane of the film is very accurately a gaussian. The values of the
moments of this gaussian are the same, within our statistical uncertainties, as those we
found in the 2D solid. Thus the triangular solid in the first layer is very like the 2D
triangular solid except for small displacements out of the plane of the lattice. At the
completion density of the first layer both the 2D and film systems are becoming close to

harmonic. The mean square displacements in the plane, from the lattice sites, are about
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6% of the square of the near neighbor distance. At the melting point of the triangular
lattice the corresponding value is about 25%.

IV. Chemical Potentials and Effective Potentials

It is well known that helium binds to graphite in successive layers. In this section we
will suggest a simple model which allows one to compute the chemical potential of each
layer accurately. The equilibrium between the layers is then determined by equating their
chemical potentials. We use this to study the formation of the second and third layers.

The chemical potential in any layer is given by

dE(p)

u(p) = E(p) + iy (12)

Here E(p) is the energy per particle at density p and the second term in Eqn. (12)
is the pressure term in the Gibbs free energy for particle. For the first layer we have
accurate GFMC calculations that give us E;(p), hence we can immediately calculate pq
from equation (12). However we also have available an accurate approximation to Eq(p);

namely

E1(p1) = E10(H,C) + Ezp(p1)- (13)

where Eq1p is the binding energy of a single helium atom to the carbon substrate and
Eap(p1) is the energy of the 2D helium system. We shall see that we do not need very
accurate approximations for p to determine the densities at which the second and third
layers form. The two terms in equation (13) are quite different in character. The second
term refers only to the particle interactions in the plane of the film, while the first term
refers only to the interaction of a helium atom with the external potential; for the first
layer this is the carbon potential. We now turn to the second layer and for the moment
consider the situation when it has just formed and is thus very dilute. The appropriate

form of our basic approximation is now

Es(p2; p1) = E20(C, p1) + Eap(p2)- (14)
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E5 and Eg will depend parametrically on p; because the binding energy of a helium atom
in the second layer depends on both the carbon potential, now at some distance away, and
the potential provided by the first layer at a density p;.

The second, and final, step in our approximate method is to show that a very simple
approximation allows us to calculate Eqo(C, p1) with sufficient accuracy. We compute Eqq
by constructing an effective external potential for the particles in the second layer. We
should however make it clear that a precise calculation of Esg cannot be performed in terms
of an external static potential. This is because the presence of atoms in the second layer
influences those in the first layer. The effective potential approximation does not take this
effect into account. However as long as the first layer is a dense solid it is very plausible
that the influence of the atoms in a dilute second layer will be small. We will return to
this point later. Our effective potential for a helium atom in the second layer consists of
two parts, that provided by the carbon substrate and that due to the interaction with the
atoms in the first layer. The carbon substrate potential is of course known, at the position
of the second layer it is rather slowly varying with a value of ~ - 23°K. The effective
potential provided by the first layer can be calculated exactly. At any point (x,y,z) in the
second layer there is a potential Vg (x,y,z; R), where R refers to a particular configuration

of atoms in the first layer. Explicitly
N

Ve(z,y,R) =Va(r;R) =) V(I —r)) (15)

j=1
Here V is the Aziz potential between two helium atoms and r; is the position of the jth
atom in the first layer. We now average over the configurations of the first layer by taking
the expectation value of Vg with respect to the ground state wave function ¥,(R) for the

first layer; the effective potential Vg is thus given by the equation,

Via(r) = (Vis(r; R)) = / U2(R)Vig(r; R)dR. (16)

We can perform this average by using our GFMC configurations; and we can therefore

compute Vg as a function of density of the first layer. We will refer to Vg as the exact
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effective potential. We expect the first layer to be a triangular solid when the second forms,
and therefore Vg (x,y,z) will exhibit, in x and y, the periodicity of this lattice. We will use
this effective potential to provide bounds on the chemical potential of the dilute second

layer.

This effective potential is, as we have pointed out, a periodic function of x and y.
We will find it useful to make a further approximation so that our effective potential is
independent of x and y and thus depends only on z. This kind of approximation leads
to rather small errors in our estimates of the densities at which the second and third
helium layers form. We chose the simplest approximation to Vg. For the layers which are
relatively tightly bound we assume that the atoms are confined to a plane. The effective
potential seen by an atom in any other layer is then computed by integrating Vg (r), Eqn
16, across the plane. This removes the x, y dependence and we have a potential Vi (z)
which depends parametrically on the density of the atoms in the plane. This is a very
simple approximation and is in the same spirit as our approximation in which we replace
the film energy with the energy of the 2D system. These two approximations form the

basis of our calculations.

In figure 6 we show three potential curves as a function of z. The curve with the highest
energy is Vg (x,y,2) when x,y are held fixed above an atom in the triangular lattice. The
lowest energy curve is Vg (x,y,z) when x,y are held fixed at the center of one of the triangles
of the lattice. The curve that lies between these is our simplified effective potential Vi
(z). In the appendix we show that the lowest eigenvalue of the exact effective potential.
Vg (1), lies between the lowest eigenvalues of the upper and lower potentials as we have
defined them. Since the minimum of Vg (z) is of bounded by the minimum of V.4, and
Vimin its lowest eigenvalue will also lie between these bounds. We are thus confident that
the lowest eigenvalue of V (z) is an accurate approximation to the lowest eigenvalue of Vg
(x,y,z). We will therefore use this approximate effective potential to discuss the formation

of the second and third layers.
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V. Layer Completion and Formation

We first present the results of our calculations for the density of formation of the
second layer. We use the bounds discussed above to bound the chemical potential of the
second layer and we use our GFMC results to compute the chemical potential of the first
layer. We then compare this result with those obtained from our 2D approximation.

The density at which the second layer will form is given by the solution to the equation

dE;

p2(p2 : p1) = pa(p1) = Er(pr) + P oy (17)

When the second layer first forms it will be dilute and the dependence of us on ps can be
neglected, and us (p1) = E2 (p1), the binding energy of a single particle in the presence
of the crystalline first layer and the carbon substrate. The effective potential provided by
the first layer depends on the density of that layer. The energy F; (p;) is the energy of the
film obtained from our GFMC calculations. In Fig. 7 we plot these two eigenvalues as a
function of p;. They decrease slowly as a function of p;. We also plot the chemical potential
of the first layer obtained from our GFMC calculation;?3 it intersects the eigenvalues at
densities of 0.115 A=2 and 0.118 A—2. We can thus rigorously state that within the effective
potential approximation the second layer will begin to form at a density lying between these
bounds. On the same figure we have also plotted the eigenvalue corresponding to the mean
potential V(z). This predicts a formation density of 0.115 A=2. The density at which the
first layer completes and promotion to the second begins has been determined by heat
capacity, third sound and neutron scattering measurements. These experiments do not
appear to be in precise agreement, the values for the completion density range from 0.11
A=2 t0 0.12 A—2.24 Our values lie in this range. We note that the difference in our two
bounds is less than 3%, which is smaller than the differences in the experimental results.
However we do not wish to place too much emphasis on the accuracy of our present work.
It is based on four assumptions, each of which requires careful examination before one can

claim great accuracy.
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The first is the use of the earliest Aziz two body potential.!®> This has now been
superseded by more accurate potentials.?> We chose to work with the older Aziz potential
because our earlier 2D work had been done with that potential and were thus able to make
interesting comparisons between the film and the 2D system. We have carried out GFMC
calculations at the two highest densities, 0.11 A=2 and 0.12 A—2 with one of the most recent
Aziz potentials.?®> We find only a very small change in the energy of the film and hence no
signifigant change in our estimates of the completion density. Second we have ignored any
contributions from 3 body terms in the interaction potential. The Axilrod-Teller potential
is known to give significant contributions to energy of a dense three dimensional helium
crystal.? We have made a simple estimate of the contribution of this potential in the high
density range of the solid first layer. This is based on a static lattice model,?” and we
find contributions to the chemical potential of the film of approximately +3.0° K. This
change in p leads to an increase of about 1% in our estimates of the density at which
the first layer will complete. Third we have replaced the periodic potential of the carbon
substrate with an averaged mean potential. Estimates® of the binding energy of the film
on a corrugated carbon substrate suggest that it differs by about 0.01° K form that on
a plane substrate.2? This small charge will have no appreciable effect on the completion
density. The corrugations of the carbon potential have become very small at the distance of
the second layer and again will have no appreciable effect on the chemical potential of the
second layer. Finally, as we have already pointed out, we have used an effective potential
approximation to calculate the chemical potential of the second layer. We are able to
check this assumption. We have available the results of computing the chemical potential
of the dilute second layer by path integral methods. Using this method we simulated the
dense first layer in the presence of a single second layer atom without using any effective
potential approximation. By the method we found a value of -29.8° K for the chemical
potential of the dilute second layer. Our bounds for the chemical potential based on the

effective potential Vg are -30.1° K and -19.6° K. The path integral value lies in this range
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and we therefore conclude that for the second layer the effective potential approximation
provides an accurate description. The basic reason for this is that at completion the first
layer is an extremely dense solid and cannot be readily perturbed by atoms in the second
layer. This argument does not apply so convincingly to an effective potential for atoms in
the third layer. At completion the second layer has only just solidified and will therefore

more likely to be perturbed by atoms in the third layer.

It is worth noting that these completion densities, ranging from 0.11 to 0.118, imply
that the first layer is an extremely dense system when the second layer begins to form.
As several authors have noted the melting density of the incommensurate solid first layer
(0.07 A=2) is almost the same as that of the basal plane of the 3D hcp *He crystal at
its melting density. Thus at this density we are in a familiar density range. However the
completion densities are 60% to 70% higher than the melting density. In 3D this is much
higher than any density at which simulations have been done. As we have already noted

the film has become close to a hormonic solid at these densities.

We can now use these results to test the two dimensional approximation in which the
equation of state of the first layer is replaced by the equation of state of 2D helium in the
presence of the carbon substrate and the chemical potential of the dilute second layer is
computed from an effective potential provided by a 2D crystalline first layer. From our
previous work on the 2D helium system we have an accurate equation of state and can thus
compute the chemical potential. For the effective potential for the second layer we have
chosen to use the mean potential provided by the 2D crystalline layer. This corresponds to
integrating the Aziz potential across the plane of the second layer, and is the 2D analogue
of the mean potential we used for our previous calculation. Figure 6 shows that this 2D
mean potential is close to the film mean potential, suggesting that this approximation is
accurate. These approximate cehmical potentials intersect at a density of 0.111 A~2, which
is outside the bounding densities of the previous calculation but which is within the range

of experimental values. This type of 2D approximation was first introduced by Campbell
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and Schick* and their results are close to ours. Although they used several simplifying
assumptions and in addition used the Lennard-Jones potential for helium. At that time

the modern Aziz potentials were not available.

Since this rather simple approximation leads to satisfactory results it is natural to
ask whether we can use it to determine the densities at which subsequent layers will
form. We believe that the effective potential approximation will be accurate as long as
the as the layers are well separated. That is as long as the density profiles, or wave
functions do not overlap appreciably. However as we move farther and farther away from
the carbon substrate the layers will be less tightly bound and will inevitably begin to
overlap appreciably. Again as long as we are dealing with tightly bound layers we should
be able to approximate them accurately with 2D systems. However we need to go beyond
this simplified picture. It is easy to see, and it is well established experimentally, that as
the density of the second layer increases towards completion the density of the first layer
also increases. It is therefore incorrect to treat the first layer as an entirely passive source
of an effective potential for the second layer. As the second layer becomes more dense
the pressure starts to rise rapidly and consequently its chemical potential also starts to
rise. However if the second layer is to be in equilibrium with the first layer its chemical
potential must also rise. The only way this can come about is for its density to increase.
Thus as we increase the total coverage sufficient atoms go into the first layer so that its
chemical potential increases to maintain equality with the chemical potential of the second
layer. To determine this increase in a fully self consistent fashion would require a difficult
simulation in which atoms are inserted and removed from the dense first layer. However
this can be avoided if we simply assume that the density of the first layer is unknown and
determine it from the equation for the equality of the chemical potentials. For example

given the density py of the second layer we can write

pa(p1; p2) = p2(p2; p1) (18)
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It is important to note that py depends parametrically on p;, and that p; depends
parametrically on ps. This comes about because the effective potential for particles in each
layer depends on the density of the other. Hence for a given p, Eqn (18) can be solved for
P1-

With these preliminary remarks in mind we now use our 2D model to determine the
density of the first and second layers at which the third layer starts to form. We have to

find p; and p2 which satisfy the two equations

pa(p1, p2) = p2(p2; p1) (19)

p2(p2; p1) = ps(ps; p1, p2) = p3(0; p1, p2) (20)

Since p3 is the density of a dilute system us can be evaluated at zero censity. It is the
binding energy of an atom in the effective potentials provided by the carbon, first and
second layers. We thus have two equations to be so lved self consistently for p; and
p2- In the 2D approximation the chemical potentials are easily calculated and the two
equations can be ready solved interatively. We find that the density at which the second
layer completes is py = 0.08 A=2, and at this density the first layer density has increased
by four percent to 0.115 A=2. The density of total coverage is thus 0.195 A=2. The
experimental range is 0.204 A=2 to0 0.212 A=2.39 Our result is approximately 5% below the
lowest experimental values. Thus for both the 1st and second layers the 2D approximation
yields completion densities which are somewhat low. The density of the first layer has
increased by about 4% which is in the range of experimental values. We can compare the
density profiles of the first layer in the presence of a dilute second layer and in the presence
of the completed second layer. We find that the position of the maximium is unchanged,
but that the height has increased by 6% and the width has decreased by 8%. Clearly the

first layer has been compressed by the completed second layer.
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There has been some discussion in the literature as to whether the second layer crys-
tallizes into an incommensurate solid just before completion or whether it requires the
compression provided by a partly full third layer. Within the framework of our 2D model
the second layer completes at a density of 0.08 A=2. This is well above the freezing density
of 2D helium, which is 0.0678 A~2. We can however make a somewhat stronger statement.
We notice from Table IV that the melting and freezing densities of 2D helium and the first
layer film are very close. We expect on this basis that the melting and freezing densities of
the second layer will be extremely close to these of the first layer. While the density profile
of the second layer is 50% wider than that of the first however it is still so narrow that the
configurations of the second layer must be very close to those of the 2D system. We thus
have very good reason to believe that the second layer will crystallize before completion.

This is in agreement with the neutron scattering data.3!

On the basis of our work we cannot make any firm prediction as to whether the third
layers will crystallize at or before completion. Experimentally the third layer? completes at
a lower density (0.07 A~2) than the second. This density is now very close to the melting
density of both the 2D and the first layer. We should also point out that the density profile
of the third layer is approximately twice as wide as that of the first layer. This will lead to
a significant lowering of the energies of both the fluid and solid phases (if one exits) thus
making it difficult to predict the freezing density of the layer. While it is plausible that
the third layer remains fluid at completion we have no strong argument to support that

conclusion.

It is interesting to note that under our assumptions the chemical potential of the
dilute third layer is -8.5° K. This can be compared with the chemical potential of bulk 3D
liquid helium which with our two body potential, and no three body potential, is -7.2° K.
These values can be contrasted with the values of the chemical potential of the dilute first
and second layers which are approximately -140° K and -25° K respectively. The chemical

potential of the third layer will slowly rise as the layer fills and reaches completion. Its
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value at that density must be close, but below that of the bulk fluid. We can thus conclude
that since four more layers can be observed at low temperatures each of these layers must
lead to a very small increments in the chemical potential of the system. This appears to
be a very subtle effect and would be very difficult to treat with precision by our methods

indeed the variational methods developed by Clements et al® may well be more suitable.

These values of the chemical potentials of each dilute layer merely reflect the strength
of the attractive potentials seen by the atoms in the dilute layer. For the first layer the
atoms merely see the potential of the carbon substrate: this has a value of approximately
-180°K. The atoms in the dilute second layer see a much weaker potential of approximately
-50°K. It is interesting to note that this has approximately equal contributions of about
-25°K from the distant carbon substrate and from the dense first layer. The atoms in
the third layer see only a very weak carbon potential -5°K, a smaller contribution from
the dense first layer -2°K and the largest contribution from the second layer -15°K. These
values are at the minimum of the total potential; the total depth at the minimum being -
22°K. This value is close to the minimum of the two layer model potential used by Clements

et al.”

In Fig. 1 we show the single particle wave functions for the three layers. The wave
fundtion for the first layer is calculated taking into account both the carbon substrate
and the completed second layer. As we have noted the second layer compresses the wave
function and density profile of the first layer. They indeed show little overlap and the first
and second layers are tightly bound. Thus for these two layers we expect our approxima-
tions to work well. However the third layer is a good deal wider which tells us that it is
unlikely that our 2D approximations will be as accurate if applied to this layer. However
to determine the densities p; and ps at which this layer begins to form does not require

us to make any approximations about how tightly it is bound.

Discussion

21



We have shown, within the framework of a smooth substrate model, that one can
accurately calculate the properties of the first two layers of helium on graphite. In the
model these layers are well separated and very tightly bound to the substrate. As the
density in each layer increases condensation into a uniform self bound liquid will take
place at about 0.04 A—2, and crystalization into a triangular lattice will occur at 0.07 A2,
We are able to compute the completion densities of both the first and second layers and
find agreement, to within a few percent, with the experimental values. Beyond the second

layer our methods may be less useful.

The major defect in our model is the absence of a realistic substrate. Not only have
we removed the basic perodicity of the graphite lattice we have also eliminated any irregu-
larities, such as steps and islands on the surface. In our model at low densities nearly two
dimensional clusters will form they will increase in size and eventually percolate to form
a connected fluid film. On a realistic substrate condensation may well take place prefer-
entially on step edges and other irregularities. Moreover the condensation into clusters
has to compete with the formation of a commensurate phase. These considerations are of
course most important for the first layer where the helium atoms experience only the bare
graphite potential. In the second layer the periodicity of the graphite potential is quite
small and the irregularities of the graphite surface may well be smoothed out by the dense
first layer. Nevertheless the second layer atoms experience the periodic potential provided
by the dense triangular lattice of the first layer. For this layer too condensation has to

compete with the formation of a commensurate phase.

Superfluidity has been seen in the second layer.® The highest density, 0.07 A2, at
which it has been detected is approximately the density at which the layer will start to
freeze into a triangular lattice. The lowest density, 0.05 A~2, is definitely above the density
at which homogeneous film will form in our smooth substrate model. This discrepancy may
be due to the irregularities on the surface leading to preferential condensation on steps and

thus delaying the formation of a homogeneous, or at least extended fluid film. Alternatively
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it may be due to the presence of a commensurate phase. The surface structure is clearly
important to understanding the behavior of the first and second layer films on graphite.
For this reason we plan to explore the topic with both variational and GFMC calculations.
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Appendix

We can readily find a potential V,,,, (z) which is larger than Vg for all x, y. Similarly
we can vind Vi (2) which is a lower bound to Vg for all (x, y). It is then straight forward
to prove that the lowest eigenvalue of Vi must be between the lowest eigenvalues of V,qz
(z) and Vyuin (z). The upper bound V4, (z) occurs when the coordinates x, y are held
fixed above a helium atom in the crysalline layer. The lower bound V,,;, (z) occurs when
x, y are held fixed at the center of one of the triangles of the lattice.

First we show that if V(r) < Vj,4q (), for all r, then F < E,p,4,. Let W0, (r) denote

the normalized ground state wavefunction for the potential V4, (7), then

Enoz = /dgr‘ll:[nax (MIT + Vinaz (1) ¥Ymaz, (1)

where T is the three dimensional kinetic energy operator, and the symbol t indicates com-
plex conjugation. If we choose W,,,.(r) as a variational wavefunction for the Hamilitonian

[T 4+ V(r)], then from the variational theorem we know that

E< / @Y, ()T + V() W (1), (2)

Subtracting Eq. 1 from Eq. 2 we find that

E - Ema,:c S /d?’r\llinam [V(T) - Vma,a: (T)]\I}ma,m7 (3)

and since V (r) < Vipaz(r) for all 7,

/dBT\I];rnaw @V () = Vinaz (1) ¥mas(r) = /d3T[V(T) — Vinaz (T)|qjmaw(r)|2 <0. (4)

JFrom Eqgs. 3 and 4 we conclude that £ < E,,,,. By a similar argument we can show
thta if Vi (r) < V(r) the E,;;, < E. This proves our assertion. Now since V4. (r) and

Vinin(r) depend only on z it follows the E,,,, and E,,;, are the ground state energies of
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the corresponding one dimensional eigenvalue problems. These one dimensional eigenvalue
problems are easily solved numerically and we therefore do not need to find the lowest -

eigenvalue of the full three dimensional potential V.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure Captions

The wave functions for the first, second and third layers of helium on a graphite
substrate. The functions are the eigenfunctions for the lowest state in potentials
which self consistently allow for the presence of the other layers. The density of the
first layer is p = 0.115 A2 while that of the second layer is p = 0.08 A=2. These are

the densities at which the third layer starts to form.

The equation of state in the fluid phase. The solid curve is fitted to the GFMC data
(boxes with error bars). The dashed line is fitted to the 2-D GFMC data (triangles
with error bars). The dashed-dot line is fitted to the variational film data (upper

boxes).

The equation of state in the solid phase. The solid curve is fitted to the GFMC data
(lower boxes). The dashed line is fitted to the 2-D GFMC data (open triangles) and

the dashed-dotted line is fitted to the film variational data (upper boxes).

The film GFMC energies for both the fluid and the solid versus 1/p. The boxes
represent the points of contact in the double tangent construction and locate the

melting and freezing densities.

The radial distribution function in the plane of the film and that of the 2D system.
The solid curve is for the 2D system, the dashed curve is for the film. Both are at a
density p = 0.0995A4~2.

Potential energy curves for an atom in the dilute second layer. Vian (z) (- -- - - ) is
the potential which bounds Vg (x, y, z) above for all (x, y). Vinin (2) ( ) is the
potential which bounds Vg (x, y, z) below for all x, y Vg (z) (- - - - - - ) is the mean

Aziz potential defined in the text.

The chemical potentials of the second layer and first layers. The three chemical

potentials of the second layer have been calculated using the potentials Viee (- - -),
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Vinin (- - --) and Vi (=-—-—-= ) . The chemical potential of the first layer (——)

was calculated from the GFMC equation of state.

30



