Small WebComputing Applied to Distributed
Monte Carlo Calculations

P.A. Whitlock!, Dino Klein! and Marvin Bishop?

! Department of Computer and Information Sciences, Brooklyn College
2900 Bedford Avenue, Brooklyn, NY 11210-2889 whitlock@its.brooklyn.cuny.edu
? Department of Mathematics/Computer Science,Manhattan College
Riverdale, New York 10471 marvin.bishop@manhattan.edu

Abstract. The software package, Small WebComputing (SWC), has
been applied to the Monte Carlo simulation of a system of hyperspheres
in dimensions greater than three. The SWC software was chosen because
once the framework is embedded in the application code, the user has
the choice of running the distributed computations as a set of applets, as
parallel threads on a symmetric multiprocessor or as independent pro-
cesses distributed over a network. A brief description of the software and
a discussion of future directions is given.

Introduction

The properties of hard hyperspherical systems in dimensions greater than three
have been studied by Monte Carlo methods[1,2]. Since the size of the system
grows as the dimension is increased (at a minimum several thousand hyper-
spheres are needed), a parallel or distributed computation was necessary. The
Small WebComputing (SWC) protocol developed by Ying and co-workers[3-5]
was selected for the project because of several attractive features. Firstly, by
simply incorporating several new classes into the Java simulation code, the ac-
tual distribution of the code is performed by the SWC software. The user is
responsible for the division of the calculation into tasks that can be run in par-
allel. Secondly, the distributed tasks can be run as Java applets and the only
requirement is that the host computer have the appropriate Java libraries, i.e.
there is no need to upload the complete SWC software onto every host com-
puter. Thirdly, the distributed tasks can also be run as threads or conventional
distributed processes depending on the computers available.

A description of the future changes that could be incorporated in order to
increase the effectiveness of the software is given.

The Original SWC Software

The Small WebComputing framework was developed to provide master-worker
MIMD parallel programming software for a user[4]. It was meant to be a straightforward-
to-use design that separated the programming interface from the underlying



hardware. To achieve its goals, the SWC software was written in Java. The use
of Java and Java applets provide inherent security through the ”sandbox” secu-
rity model[6, 7]. A set of extendable classes that sustain the framework for the
user’s computation are provided. In the original version of SWC, upper level
communication, e.g. between the Master process and the server, used the Trans-
mission Control Protocol (TCP) and lower level communication used the User
Datagram Protocol (UDP). Eager scheduling[8,9] was employed to guarantee
load balancing and task completion.

The SWC framework envisions a computation as composed of three levels:
the Master, the Router, and the Worker components. The user of the software
must identify the tasks that the Master and the Worker must complete. The
Router component is provided by the software. A computation that is run via
the SWC framework contains a single Master, one or more Routers, and one
or more Workers. The user programs the Master component so that it divides
the computation into smaller tasks, referred to as Work Units. The Workers are
responsible for processing the Work Units (completing the task that the Work
Unit represents) and returning Result Units to the Master. The purpose of the
Router component is to act as a liaison between the Master and the Workers.
The Routers pass Work Units and Result Units back and forth; all communi-
cation with the Workers is channeled through the Routers which protects the
Master from being flooded by connections from Workers. Thus the communi-
cation is tiered, with the Master only communicating with the Routers, the
Routers communicating with both the Master and the Workers, and the Work-
ers communicating only with the Routers (no inter-Worker transmission of data
is allowed). Computations are guaranteed to complete since any incomplete task
(no Result Unit has yet been returned for the task) is kept on the task queues
by the Routers and reassigned to an idle Worker that requests a Work Unit.
The SWC software is completely thread based and therefore can easily take
advantage of multiple CPU host computers.

In order to create a computation, the user must extend and implement the
following abstract classes and interfaces:

SWCWorkUnit: a class implementing this interface will contain data regard-
ing the task that needs to be done

SWCResultUnit: a class implementing this interface will contain results from
the task that was completed

SWCMaster: the implementation of this abstract class must generate Work
Units, collect Result Units, and output computation results

SWCWorker: the implementation of this abstract class processes the Work
Unit and creates a Result Unit which is returned to the Master.

It is important to note that the concrete class, SWCRouter, which functions
as the Router in the system, does not need to be extended since it does not per-
form any computation specific operations. However, even though the SWCRouter
in the original version of SWC is never modified, any specific implementation of
it cannot be shared among multiple computations, due to the fact that a Router
is connected to only one Master running a single computation.



Small WebComputing 2: An Improved Version of the
Software

The new version of the Small Web Computing (SWC2) framework[10] has im-
proved the usability of the software. Computation specificity has been completely
removed from the Master and Worker, and now the framework can host multiple,
independent, concurrent computations. The Router’s functionality is confined to
transferring Work/Result Units among the Master and the Workers. This lack
of specificity is achieved by incorporating a ”pull model” of communication be-
tween each level of the framework. A Worker process requests (pulls) a Work
Unit from a Router, while the Router requests Work Units from the Master.
Computation completion is still guaranteed through eager scheduling.

The new version relies on TCP for all communication between the compo-
nents. The original SWC framework relied on the UDP as the protocol of choice
for communicating with Workers. This choice, coupled with the lack of the abil-
ity to fragment Work/Result Units at the framework level, limited the size of
Work /Result Units to 64 kilobytes. The decision to use UDP may have been due
to the implementation of the TCP classes in the JDK current when the SWC
framework was originally written. In Table 3 of Ying, Arnow and Clark[3] which
gives elapsed times for 100 iterations of transmissions of various data sizes, one
notes that TCP failed to transmit 4K and 64K data instances. Another difficulty
with the use of UDP was the reliable delivery of Work Units and Result Units.
The SWC framework contained code to check periodically for the delivery of
UDP packets. This code was the source of timing bottlenecks and bugs which
haunted the early usages of the software. Since TCP guarantees delivery, the
SWC2 framework does not need to test for delivery and perform retransmission
of Work and Result Units. This has simplified the software and lead to greater
transparency of the SWC2 source code. There is no longer a restriction on the
size of the data transmitted. Exhaustive testing has shown that there is no prob-
lem with using TCP for large data sets or frequently sent transmissions in the
new version of SWC2.

The Monte Carlo Application

The current application studies the properties of a system of several thousand
hard hyperspheres in dimensions greater than three by using the Metropolis[11]
Monte Carlo sampling technique [1]. This technique requires repeated random
displacements of the hyperspheres which correspond to random walks in the
configuration space of the problem. This type of calculation is usually straight-
forward to parallelize. Each of the random walks can be performed in parallel
with all the others and only the final statistics need to be communicated and
combined. In our simulation, the restriction of the size of the transmitted data
blocks in the original SWC software made frequent communication of large data
sets undesirable. Therefore, the application code was programmed in an ”em-
barrassingly parallel” mode.



Ying and co-workers[4] original vision for SWC was that the programmer
would divide their computation into small tasks that would take only an hour
or two on any individual computer. This would not burden the volunteer host,
which would likely be available for this amount of time. A GUI feature present
in the software allows the user to program a task completion display that would
indicate the amount of time remaining when the applet version of the Worker
is used. While the SWC software is robust to losing tasks, i.e. they are just
reassigned, a large number of lost tasks does seriously affect the efficiency of the
calculation.

In the present case, for lower dimensional systems such as one or two dimen-
sions, a random walk completes in one or two hours. The time for calculating a
complete random walk increases dramatically in higher dimensions. A four di-
mensional system with 4096 hyperspheres typically took six hours and forty one
minutes to complete ten parallel instances of a random walk consisting of thirteen
thousand passes (each pass represents trying to move all the hyperspheres). An
identically sized system in six dimensions, 4096 six-dimensional hyperspheres,
took thirty three hours to complete ten parallel instances of a random walk of
eleven thousand passes at a similar number density (number of hyperspheres per
unit volume). These large times for individual tasks require processors which are
available for long periods of time.

When a computationally intensive code is written in Java, there is always
a concern that the calculations will run substantially slower than if they were
implemented in a different language. Extensive testing was done to compare the
Java simulation code using the SWC libraries against a serial C++ code. The
serial C++ code and the parallel SWC code were run on the same processor
and gave the exact same results. In a comparison of two, five dimensional runs
involving 3125 hard hyperspheres with 3000 total passes, the serial code took
2 hours and 24 minutes. Whereas, the Java code with just one Worker took
2 hours. Similar timing results were obtained in all test cases, confirming our
decision to use the SWC software.

While some of the calculations of the hard hypersphere systems have been
deployed over a heterogeneous set of computers via the Internet, most of the
production runs have been carried out on a network of Sun workstations. This
occurred because it was easier to harness a large group of networked worksta-
tions than to access a large number of unrelated computers. When volunteer
hosts are requested to run the applet tasks, the version of the Java Virtual Ma-
chine running on each machine can be an issue. However, the applets did run
successfully on PCs using Internet Explorer 5 or Netscape 6 running Windows
2000, PCs using Mozilla 1.0.1 running Linux 2.4 and PCs using Netscape 4.7
running Solaris 2. In the setting of separated colleagues collaborating on a cal-
culation and thus able to negotiate the choice of browser and JVM, the applet
version of the Worker is a feasible method of performing calculations.



Future Directions

After several years of experience with the software, major improvements are
planned. The computations are always run with multiple Routers, so that if
one Router is removed, the other Routers accept the returned Result Units and
assign new tasks. This is possible because each worker knows about the existence
of all the Routers. However, if the Master is removed, all the computations are
lost. Parallel Masters as well as parallel Routers are needed, especially, if the
user chooses to run multiple concurrent computations.

In the present SWC2 organization, no communication can occur directly be-
tween Workers. Fach task has to be independent of the other tasks. To extend the
hypersphere computation to dimensions greater than seven will require a major
change in the way the the random walks are performed. The easiest alteration
would be to divide each of the parallel random walks into tasks representing a
thousand or so passes and to then serialize the random walk into sets of tasks.
This would require the transmission of the intermediate positions of the hyper-
spheres in the random walk, between the Master and the Worker, to continue
the walk. This is easily accomplished with SWC2. An example of organizing a
computation to allow for multiple exchanges of data between the Master and the
Workers is given by the sample factorial computation in the SWC2 documenta-
tion[10]. For very large simulations, a commonly used alternative is to divide the
domain space of the hard hypersphere system into subdomains containing sets of
neighboring hyperspheres[12,13]. In the present computation, the domain space
is already partitioned into hypercells in order to efficiently detect hypersphere
overlap. In a domain decomposition paradigm, the subdomains would represent
distributed tasks and could be run on different Workers. If a hypersphere moved
sufficiently far, it would need to be transferred to a different subdomain. This
transfer would require a type of Worker to Worker communication. The exact
form of the communication within the SWC2 framework is not at all clear, since
the ”sandbox” security model should not be violated. One possibility would be to
have a Worker periodically query the Router if there were any communications
awaiting delivery. Since the originating Worker would not know the location of
the receiving Worker, a broadcast to all Workers might be necessary. Or a bar-
rier may be necessary to ensure that the Workers are approximately all at the
same step in the random walk. They would need to check for a communication
at every move[14]. This is a well-known problem in parallel simulations[15] and
can lead to great inefficiencies in the simulation[16].

Additional improvements to the SWC2 software are currently being imple-
mented. The creation of a new computation is now done through command line
instructions. An improvement to the user interface, a GUI computation creation,
is under development. The programming of a GUI management tool has been
completed and is undergoing evaluation for ease of use and error checking. In
the current version of SWC2, a Worker may continue to calculate tasks that
have already been completed by another Worker. This is almost unnoticeable
for short tasks. However, when lengthy task are run, the whole computation
may be completed and Workers could continue to compute tasks for hours that



were assigned by the Router just prior to the return of a Result Unit. A GUI
interface has been designed and implemented that allows the user to keep track
of Workers and send a terminate task instruction to a Worker. To achieve this
with a pull model of communication requires the Worker to periodically check
the Router for waiting messages. This is a useful improvement that needs to be
coordinated with the general issue of communication between the Worker and
the Router in addition to the transmission of Work and Result Units.

Summary

The Small WebComputing framework has been successfully used in the investi-
gation of large hypersphere systems distributed over the Internet and on local
area networks. To move the calculation to the next level of investigation, dimen-
sions higher than seven and tens of thousands of hyperspheres, requires changes
to the organization of the computation code and perhaps changes to the SWC2
software that will enable some form of Worker to Worker communication. How
well this would work over the Internet with communication latency and a higher
frequency of lost tasks needs careful evaluation.

Acknowledgments

We wish to thank the Brooklyn College Computing Center and the Manhattan
College Computing Center for their support. One of us, D.K., was partially
supported by PSC/CUNY Award # 65410-0034.

References

1. Whitlock, P.A., Klein, D., and Bishop, M.: A parallel Monte Carlo Simulation
of a 5-Dimensional hard sphere system using SWC. CUNY Ph.D. Program in
Computer Science Technical Report, TR-200405, http://www.cs.gc.cuny.edu/tr/,
and submitted to J. Parallel and Dist. Computing

2. Bishop, M., Whitlock, P.A. and Klein, D.: The Structure of Hyperspherical Fluids
in Various Dimensions. J. Chem. Phys. (accepted 2004)

3. Ying, K., Arnow, D. and D. Clark: Evaluating Communication Protocols for We-
bComputing. In Proceedings of the 1999 International Conference on Parallel and
Distributed Processing Techniques and Applications, CSREA Press, Las Vegas,
June (1999)

4. Arnow, D., Weiss, G., Ying, K. and Clark, D.: SWC:A Small Framework for Web-
Computing. In Proceedings of the International Conference on Parallel Computing,
Delft, Netherlands, August (1999)

5. Ying, K.M.: WebComputing: Design and Performance. Ph.D. dissertation, Com-

puter Science, City University of New York (2000)

http://java.sun.com/sfaq/verifier.html

7. McGraw, G. and Felten,E.W.: Securing Java: Getting Down to Business with Mo-
bile Code, 2nd Edition. John Wiley & Sons, New York, (1999) Chapter 2.

]



10.

11.

12.

13.

14.

15.

16.

Baratloo, A., Karaul, M., Kedem, Z. and Wyckoff, P.: Charlotte: Meta-
computing on the Web. In Proc. of the 9th International Conference
on Parallel and Distributed Computing Systems, September (1996),
http://cs.nyu.edu/milan/charlotte/

Neary, M.O. and Cappello, P.: Advanced Eager Scheduling for Java-Based Adap-
tively Parallel Computing. In Proc. Joint ACM Java Grande - ISCOPE Conference
(2002), ~www.cs.brandeis.edu/dilant/ WebPage_TA160/02JavaGrande.pdf
“http://acch.its.brooklyn.cuny.edu/dinklein /swc2docs/

Metropolis, N., Rosenbluth, A.-W., Rosenbluth, M.N., Teller, A.H. and Teller, E.:
Equations of state calculations by fast computing machines. J. Chem. Phys. 21
(1953) 1087

Barnes, J.E. and Hut, P.: A Hierarchical O(NlogN) Force Calculation Algorithm.
Nature 324 (1986) 446449

Greengard, L. and Rokhlin, V.: A Fast Algorithm for Particle Simulations. J.
Comp. Phys 73 (1987) 325-348

Wilkinson, B. and Allen, M.: Parallel Programming, Second Edition. Pearson Pren-
tice Hall, Upper Saddle River, NJ (2005) Chapter 6

Jefferson, D.R..: Virtual Time, ACM Transactions on Programming Languages and
Systems 7 (1985) 404-425

Jones, K. and Das, S.R.: Combining Optimism Limiting Schemes in Time Warp
Based Parallel Simulations. In: D.J. Medeiros, E.F. Watson, J.S. Carson and M.S.
Manivannan, eds., Proceedings of the 1998 Winter Simulation Conference



