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Abstract. Recent experimental investigations [20] of solid 4He have been
interpreted as showing possible superfluidity in the solid at low tempera-
tures, below 0.2 K. A solid behaving this way, exhibiting both long range
translational order and superfluidity, has been called a supersolid phase.
The existence of a supersolid phase was proposed many years ago [1], and
has been discussed theoretically. In this paper we review simulations of the
solid state of bulk 4He at or near absolute zero temperature by quantum
Monte Carlo techniques. The techniques considered are variational cal-
culations at zero temperature which use traditional Bijl-Dingle-Jastrow
wavefunctions or more recently, shadow wavefunctions; Green’s function
Monte Carlo calculations at zero temperature; diffusion Monte Carlo, and
finally, the finite temperature path integral Monte Carlo method. A brief
introduction to the technique will be given followed by a discussion of the
simulation results with respect to solid helium.

1 Introduction

After many years of investigation, the properties of the solid phases of bulk, 4He,
were felt to be well understood [3]. At temperatures near absolute zero, 4He exists
in both the solid and fluid states. The crystalline structure is known to exhibit
hexagonal closest packing (hcp) rather than the face centered cubic packing ex-
pected for a three-dimensional hard sphere system. Even at absolute zero, the
atoms exhibit zero point motion around their lattice positions which leads to a
very “loose” solid at densities near melting. In the 1960’s, Andreev and Lifshitz
[1] proposed that such quantum solids could sustain superfluidity. One indicator
of the onset of superfluidity is the Bose-Einstein condensate, the fraction of the
atoms condensed into the zero momentum state. The condensed atoms acquire
quantum mechanical coherence over macroscopic length scales. Quantum Monte
Carlo simulations observed a Bose-Einstein condensate of several percent in liq-
uid 4He systems [34]; but only detected a condensate in a quantum solid when
the atoms were interacting with a Yukawa potential [6].

Interest has been recently renewed by the torsional oscillator experiments of
Kim and Chan [20]. Ultrahigh-purity 4He was confined in a torsion cell and
subjected to pressures between 26 and 66 bars to reach the solid phase. A non-
classical rotational inertia fraction that can be associated with superflow was
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observed at temperatures below 230 milliKelvin. These observations have lead
to renewed interest in the measurements of the Bose-Einstein condensate and
other measures of superfluidity in simulations of the properties of solid helium.

4He systems may be studied theoretically by solving the appropriate
Schrödinger or Bloch equation. At absolute zero, the behavior of an N body
helium system is described by the eigenfunction of the Schrödinger equation in
3N dimensional space:

[−∇2 + V (R)]Ψ0(R) = E0Ψ0(R) (1)

where R ≡ {ri | i = 1, . . . , N} and the ri are the positions of the individ-
ual atoms. V(R) represents the interaction potential between the atoms in the
system. The term [−∇2 + V (R)] is the Hamiltonian, H, for the system and is
written here in dimensionless form. Knowledge of the physical relationships be-
tween the atoms can be built into a parametrized mathematical form for a trial
wavefunction, ΨT (R), an approximation to Ψ0(R). The variational energy can be
minimized with respect to the parameters through the Monte Carlo evaluation
of the expectation value of the ground energy, E0. This technique is referred
to as variational Monte Carlo (VMC). Approaches where the simulation results
are subject only to statistical uncertainties are referred to as Quantum Monte
Carlo (QMC) methods. In the Green’s function Monte Carlo (GFMC) method
the integral transform of the Schrödinger equation, (1), is iterated by performing
a random walk in the configuration space of the N atoms to yield an asymptot-
ically exact solution. Such a solution can also be obtained by sampling a short
time Green’s function followed by an extrapolation of the results to account for
the time step errors introduced by the approximation. This technique is known
as diffusion Monte Carlo (DMC). Finally, finite temperature systems may be
studied by considering the Bloch Equation:

[−∇2 + V (R) + ∂/∂t]�B(R, t) = 0, (2)

where �B(R, t) is the many-body density matrix. Path integrals [12, 16] Monte
Carlo (PIMC) simulations can be performed and for small enough temperature
intervals, the density matrix can be compared to the ground state eigenfunction
from (1).

In the following sections, the results of applying the techniques outlined above
to the simulation of solid 4He will be described.

2 Variational Monte Carlo Methods

Given a trial wavefunction, ΨT (R), an estimator for the variational energy,

ET =
〈ΨT |H |ΨT 〉
〈ΨT |ΨT 〉 ≥ E0, (3)

is an upper bound to the true ground state energy E0 of the system. The lowest
variational energy is obtained through a minimization process with respect to
the parameters in ΨT (R). In the coordinate representation (3) becomes:
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ET =
∫

dRΨ∗
T (R)HΨT (R)

∫
dR|ΨT (R)|2 =

∫
dRπ(R)EL(R), (4)

where dR ≡ d3r1d
3 . . . rN . The last term of the above equation, EL(R), the local

energy, is obtained by multiplying and dividing the numerator of (3) by ΨT (R),

EL(R) =
HΨT (R)
ΨT (R)

, (5)

and π(R) is a normalized probability distribution function,

π(R) =
|ΨT (R)|2

∫
dR|ΨT (R)|2 . (6)

2.1 Trial Wavefunctions

As point out by Feenberg [11] a plausible general form for the exact ground-state
wavefunction of a system of N interacting bosons is

Ψ(R) =
∏

i<j

f2(rij)
∏

i<j<k

f3(i, j, k)
∏

i<j<k<l

f4(i, j, k, l) · · · (7)

= exp
1
2

⎡

⎣
∑

i<j

u(rij) +
∑

i<j<k

u3(i, j, k) +
∑

i<j<k<l

u4(i, j, k, l)

⎤

⎦ · · · (8)

In the liquid phase, the simplest variational function, the so called Bijl-Dingle-
Jastrow or Jastrow trial function, considers only a single term of the above
expression: u2(rij). The first computer simulation for a system of helium atoms
was performed by McMillan [22] using u2(r) = b/r5 and reasonable results were
obtained. A better approximation to the variational wavefunction which included
three-body correlations [28], u3(i, j, k), led to an improvement of about 10% in
the estimated values of the energies.

For the solid phase, the usual approach was to write the trial wavefunction as

ψTsol(R) =
∏

i<j

f2(rij)Φ(R), (9)

where Φ(R) is a model function, ideally, a permanent of localized single particle
orbitals. However, since the effect of the quantum statistics on the energy is
minor, Φ(R) is left unsymmetrized. Gaussian orbitals were used in simulations
performed by Hansen and Levesque [14] with reasonable results. The inclusion of
triplet correlations, f3(i, j, k), in the trial wavefunction lead to an improvement
of about 15% in the simulations results [32]. The introduction of higher-order cor-
relations in a trial wavefunction has become feasible by introducing the shadow
wavefunction [30], discussed more fully below.

The functional form of correlation factors in a trial wavefunction can be fully
optimized. The idea is to write the correlation factors as a sum of the elements
of a basis set [31]. For the two-body correlation factor,
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f(r) =
M∑

n=1

cnfn(r), (10)

where the fn are functions of the basis set and the cn are variational parameters.
If the basis is well chosen, a small value of M is sufficient to recover all the
energy associated with the correlation under consideration. For (10), a very
suitable basis is the one obtained by solving for the lowest M energy states of
the Schrödinger-like equation involving a pair of helium atoms,

(

− h̄

2m
∇2 + V (r)

)

fn(r) = λnfn(r). (11)

The boundary conditions are such that at a distance d, chosen as a cutoff or
eventually as a variational parameter, the functions fn go smoothly to 1 or to
a function that gives the correct long range behavior of the system. One of the
advantages of this method is to automatically obtain an optimal correlation at
small values of r. Since, the wavefunction is small when r → 0, it is difficult to
sample this very important region of configuration space. Thus, the usual Monte
Carlo optimization of the trial function, does not perform well at small r.

2.2 Monte Carlo Techniques

The simulation starts by sampling the normalized probability distribution π(R)
of (6), i. e., by constructing a sequence of points {Ri|i = 1, . . . , M} in the
configuration space. More formally we require [19] that Ri belong to the sequence
with probability given by

Pr{Ri} =
∫

Ω

dRπ(R) (12)

for any Ω ⊂ Ω0 of the sample space Ω0. The sampling in most cases is performed
using the Metropolis [23] algorithm.

If we consider M independent samples, the variational energy is estimated as

EM =
1
M

M∑

i=1

EL(Ri). (13)

In the limit of large M we have EM → ET . This energy is obtained without any
uncontrolled approximations or nonconvergence for any form of the wavefunction
and is subject only to statistical uncertainties of O(M−1/2). The statistical error
is easily estimated. Variance reduction techniques, e. g. importance sampling, can
be used to reduce the multiplicative factor that appears in the calculation of the
error. Other properties of the system can also be readily estimated.

2.3 Variational Results on Solid 4He

The earliest variational calculations could not differentiate between a crystal
with fcc packing and one with hcp order. Chester [10] showed that a Jastrow
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wavefuntion, ΨT (R) =
∏

i<j f(rij), supports a Bose-Einstein condensate. How-
ever, this pair product form without the localization provided by φ(r), as in (9),
only crystallizes at a very high density [15]. Therefore the use of gaussian one-
body orbitals, φ(r), was introduced. This, however, precluded the observation of
a Bose-Einstein condensate.

Recently, Vitiello considered in great detail the question of the ground-state
structure of solid helium using the most recent he-he potential of interaction.
Performing careful variational calculations and employing reweighting, he was
able to show that the hcp order is favored in the 4He system [29].

2.4 Shadow Wavefunction Calculations

The construction of trial functions based on the inclusion of auxiliary variables,
“shadow particles”, is a very successful approach within the variational methods.
These trial functions are particular representations of the Feenberg form [11],
where one is able to introduce tractable correlations up to the number of particles

ΨSh(R) =
∏

i<j

f(rij)
∏

i<j<k

f
(3)
ijk . . .

∏

i<j...<w

f
(N)
ij...w. (14)

The variational shadow wavefunction is defined in terms of an integral over
auxiliary variables S ≡ {si|i = 1, . . . , N} in the whole space

ΨSh(R) =
∫

Ξ(R, S)dS, (15)

where Ξ is a function that includes a factor of the Jastrow form dependent solely
on the configuration space coordinates R, a Gaussian coupling between the space
variables ri and the auxiliary variables si, and a term of the Jastrow form that
correlates the si among themselves:

Ξ(R, S) = exp

⎛

⎝−
∑

i<j

1
2

(
b

rij

)5

−
∑

i

C|ri − si|2 −
∑

i<j

γV (δsij)

⎞

⎠ . (16)

In this formulation ΨSh(R) depend on the He-He interacting potential and four
variational parameters: b, C, γ and δ. Since the auxiliary variables, due to the
last term of Eq. (16), are isomorphic to the coordinates of a system of particles
interacting through V , we call the auxiliary variables shadow particles.

A trial wavefunction that can correlate all the atoms in the system is impor-
tant by itself. In addition, there are strong physical motivations to deal with
such a class of variational wavefunctions: Feynman’s path integrals in imaginary
time and justifications from projection methods.

Shadow wavefunctions have enabled the investigation of disorder phenomena
in solid 4He such as vacancies [24] or the interfacial region between a solid and
a liquid at coexistence [25] by variational calculations. This is possible because
with the shadow wavefunction approach both the fluid phase and solid phases can
be described, without the introduction of single particle orbitals. Moreover the
Bose symmetry is manifestly maintained and so relaxation around non-localized
defects are allowed.
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3 Green’s Function Monte Carlo

If the potential energy in (1) is bounded from below V (R) ≥ −V0, (1) can be
rewritten as:

[−∇2 + V (R) + V0]Ψ0(R) = (E0 + V0)Ψ0(R). (17)

A Green’s function,

[−∇2 + V (R) + V0]G(R, R0) = δ(R − R0) (18)

can be derived with the same boundary conditions as Ψ0(R) and used to trans-
form (17) into an integral equation:

Ψ0(R) = (E0 + V0)
∫

G(R, R′)Ψ0(R′)dR′. (19)

Since the ground-state wavefunction and Green’s function for a Bose system are
non-negative; the ground state wavefunction and approximations to it may be
treated as probability distribution functions. The Green’s function may also be
used as a distribution function for R conditional on the previous position R′.
The integral version of the Schrödinger equation, (19), is solved by a Neumann
iteration starting with a zeroth order approximation, such as a trial wavefunction
optimized in a variational calculation. A population of points {R′} is sampled
from ΨT (R′) and a new set of points {R} is sampled from (Et + V0)G(R, R′)
where Et is an approximation to the ground-state energy. As this process is
repeated, at the nth iteration the set of points {R′} has been sampled from ψ(n)

and the next generation of points, n+1, is sampled from:

ψ(n+1)(R) = (Et + V0)
∫

G(R, R′)ψ(n)(R′)dR′. (20)

Equation (20) defines one step of a random walk whose asymptotic distribution
is Ψ0(R). Since the simulation system is composed of N atoms with periodic
boundary conditions, the Schrödinger equation has a discrete spectrum and the
iterations are guaranteed to converge.

The procedure may be made computationally more efficient and the variance
reduced by employing an importance sampling transformation [18]. Let ΨT (R) be
a trial wavefunction which may be the same as ψ(0)(R) and Ψ̄(R) = ΨT (R)Ψ(R),
then (19) becomes

Ψ̄(R) = (E + V0)
∫

[ΨT (R)G(R, R′)/ΨT (R)]Ψ̄(R′)dR′. (21)

The sequence of functions obtained by iteration of the integral equation con-
verges to ΨT (R)Ψ0(R) and Et is chosen such that the random walk is stable.

Unfortunately, the Green’s function, (18), is not known analytically owing to
the complexity of the boundary conditions. However, to implement the algorithm
represented by (20) or (21), it is not necessary to know the full Green’s function;
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it is sufficient to develop a method to sample configurations from G(R, R′). The
Green’s function may be written as,

G(R, R′) =
∫ ∞

0
G(R, R′, τ)dτ (22)

G(R, R′, τ) is the Green’s function for a Bloch equation, (2),

(H + ∂/∂τ)G(R, R′, τ) = δ(R − R′)δ(τ). (23)

For a given configuration, R0, a finite domain, D(R0), may be chosen such that
the potential of interaction, V(R), is bounded from above within the domain by
the constant, U(R0). A domain Green’s function may then be defined:

[−∇2 + U(R1) + ∂/∂τ ]GU (R1, R0, τ) = δ(R1 − R0)δ(τ) (24)

subject to the boundary condition that GU (R1, R0, τ) = 0 whenever R1 is on
the boundary or outside of D(R0). Physically, (24) represents a diffusion process
of a particle in a domain with a constant absorption rate and a perfectly ab-
sorbing boundary. Multiplying (18) by GU (R1, R0, τ) and (24) by G(R, R1, τ),
integrating both equations over R1 and subtracting the two resulting equations
yields:

G(R, R0, τ) = GU (R, R0, τ)

+
∫

∂D(R0)

(
∂GU (R1, R0, τ − τ0)

∂n

)

G(R, R1, τ0)dR1 (25)

+
∫

D(R0)
(U(R0) − V (R1))GU (R1, R0, τ − τ0)G(R, R1, τ0)dR1

Equation (26) is a linear integral equation for G(R, R0, τ) in terms of GU (R, R0,
τ). In the second term of the right hand side of (26), the boundary condition
for GU (R1, R0, τ) has been used to convert a volume integral into a surface
integral over ∂D(R0) and the derivative normal to the domain’s surface, ∂/∂n
has been introduced. The domain, D(R0) may be chosen in any convenient way;
in particular, as the Cartesian product of three-dimensional spheres or cubes
centered at R0. GU (R, R0, τ) is known analytically and may be interpreted as a
conditional probability distribution function. Thus, points {R} may be sampled
by a random walk governed by (26) for any given set {R0}.

An asymptotically unbiased estimator for the energy is given by

Em =
∫

Ψn(R)HΨT (R)dR
∫

Ψn(R)ΨT (R)dR
. (26)

Except for statistical sampling and convergence errors, (26) is an exact estima-
tor for the ground state energy. For other properties of the physical system,
F(R), that do not commute with the Hamiltonian, a “mixed” estimator may be
defined as

〈F 〉m =
∫

Ψn(R)F (R)ΨT (R)dR
∫

Ψn(R)ΨT (R)dR
. (27)



Quantum Monte Carlo Simulations of Solid 4He 47

If the trial wavefunction ΨT (R) is “close” to the actual ground state wave-
function, ΨT (R) = Ψ0(R) + δψ(R), then a linear extrapolation may be used to
estimate the exact value to within an order δ2:

〈F 〉x = 2〈F 〉m − 〈F 〉T (28)

where 〈F 〉T is the variational value calculated with ΨT (R). It was shown [34] that
this extrapolation process gave the same expected value as the random walk
based on the “forward walking” algorithm but with much smaller statistical
errors. The extrapolated value was also shown to be independent of the trial
wavefunction used.

As in variational calculations, the result of the GFMC simulations is a wave-
function represented as an ensemble of configurations of atomic positions.
Through (27) and (28), the Bose-Einstein condensate fraction can be obtained
for the helium system. The fraction of particles in the zero-momentum state is
given by the asymptotic limit of n(r),

n0 = lim
r→∞n(r). (29)

The one-body density matrix, n(r), is a measure of the change in the wavefunc-
tion for given displacement r and is the fourier transform of the momentum
distribution, n(k):

n(r) =
∫

eik·rn(k)dk

=
〈

Ψ(r1, r2, · · ·, ri + r, · · ·, rn)
Ψ(r1, r2, · · ·, ri, · · ·, rn)

〉

. (30)

The first calculation of the Bose-Einstein condensate in solid 4He using the GFMC
method [7] involved the trial wavefunction of Eq. (9) and the Lennard-Jones po-
tential of interaction [4]. It was of course recognized that the form of the trial
wavefunction that was used as an importance function might bias the results and,
not surprisingly, the condensate fraction was less than 1%. Additional calculations
[34], showed that the Lennard Jones potential itself was inadequate to describe the
helium system. A further investigation of the Bose-Einstein condensate concluded
that Ceperley, et. al. [6] observed a condensate because they used a translationally
invariant wavefunction for the importance function. The GFMC simulations were
repeated using a more realistic form for the potential of interaction, the HFDHE2
potential [2] and improved wave-functions [17]. However, no condensate fraction
within statistical error was observed in the solid phase [35, 36].

In a variational calculation using a shadow wavefunction, when the density
of a system of helium atoms reaches the appropriate value, a state with trans-
lationally broken symmetry is spontaneously produced. Thus, it was natural to
introduce shadow wavefunctions as importance functions in GFMC calculations.
In order to perform these calculations, Whitlock and Vitiello [33] made an ex-
tension to the GFMC method such that the shadow degrees of freedom where
updated using the Metropolis algorithm according to the probability distribu-
tion of (16). Despite good results for some of the properties of the system, the
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variance of the calculation did not encourage further attempts to compute the
condensate fraction in the solid phase. However the idea of using the shadow
wavefunction ideas in a QMC method seems promising.

3.1 Diffusion Monte Carlo

The time dependent Schrödinger equation in imaginary time t → it/h̄,

∂ψ(R, t)
∂t

= −(−∇2 + V (R) − Et)ψ(R, t), (31)

is equivalent to the classical diffusion equation with sources represented by V (R).
In (31), the Hamiltonian H has been written as the sum of the kinetic energy
T , −∇2, plus the potential energy V (R) displaced by a trial energy Et, which
does not change the description of the state of the system.

In a short time approximation, the Green’s function for (31) can be written
to O(t) as,

G(R, R′, δt) ≈ 〈R|e−V (R)δt/2e−Tδte−V (R′)δt/2eEtδt|R′〉. (32)

It is possible to rewrite the above expression as the product of a rate term,

w(R, R′, δt) = exp(−(V (R) + V (R′))
δt

2
+ Etδt), (33)

times a propagator, identified as the Green’s function for ordinary diffusion,

Gd(R, R′, δt) = 〈R|e−Tδt|R′〉 = (4πδt)−3N/2 exp
(

− (R − R′)2

4δt

)

. (34)

In a simulation, for each R′ in a given set of configurations, a new R is easily
sampled from Gd and weighted by w(R, R′, δt). By repeating these steps and
performing a suitable extrapolation to t → 0, the results will yield an estimate
of the ground-state energy if Et ≈ E0. This is shown by writing the formal
solution of the time dependent Schrödinger equation as

ψ(R, t) =
∑

i

ϕi(R)e−i(Ei−Et)t/h̄, (35)

where the ϕi(R) are an orthogonal basis set.
The method presented so far is very inefficient due to the branching process

and because the random walk may explore unimportant regions of the configura-
tion space. Here again an importance sampling transformation as in (21) allows
the simulations to converge faster and more efficiently. If (31) is multiplied by a
trial wavefunction ψT , it can be written in the coordinate representation as

∂ψ̄(R, t)
∂t

= −
(
−∇2 + ∇ · F(R) + F(R) · ∇ − (Et − EL(R)

)
ψ̄(R, t), (36)

where ψ̄(R, t) = ψT (R)ψ(R, t), EL(R) is the local energy and F(R) = 2∇ ln
ψT (R). If we compare the above expression with equation (31), it still includes
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a branching process, given by V = EL(R) − Et. The diffusion process has a
superimposed drift velocity given by the two last terms of the expression, −∇2+
∇ · F(R) + F(R) · ∇.

By taking the short time approximation, as before we can write:

Ḡ(R, R′, δt) = W̄ (R, R′, δt)Ḡd(R, R′, δt), (37)

where

W̄ (R, R′, δt) = exp
(

−(EL(R) + EL(R′))
δt

2
+ Etδt

)

, (38)

and

Ḡd(R, R′, δt) = (4πδt)−3N/2 exp
(

− (R − R′ − δtF(R))2

4δt

)

. (39)

Simulations that include importance sampling converge to ψT ψ. Instead of com-
puting V (R), now we calculate EL which approaches a constant as ψT (R) goes
to the true eigenfunction of the system. This is important since the simulations
become much more stable. Moreover, the drift guides the random walk to the
important regions of the configuration space.

4 Path Integral Monte Carlo

All static and, in principle, dynamic properties of a many-body quantum system,
such as 4He, at thermal equilibrium, may be obtained from the density matrix,
�(R, R′, β), the solution to the Bloch equation, (2). β represents an inverse tem-
perature or “imaginary time”, β = 1/kT . The solution to the Bloch equation
can be written in the coordinate representation as:

�(R, R′, β) =< R|e−βH |R′ > (40)

For distinguishable particles, the density matrix is non-negative for all values
of its arguments and can be interpreted as a probability distribution function.
If two density matrices are convoluted together, a density matrix at a lower
temperature results:

< R|e−(β1+β2)H |R′ >=
∫

< R|e−β1H |R′′ >< R′′|e−β2H |R′ > dR′′. (41)

The integral over R′′ may be evaluated using a generalization of the Metropo-
lis sampling algorithm [26, 8]. Starting at a sufficiently high temperature, the
density matrix may be accurately written as an expansion in one and two-body
density matrices. Then, multiple convolutions can be performed to reduce the
temperature to near absolute zero.

The density matrix for a boson system such as 4He is obtained from the
distinguishable particle density matrix by using the permutation operator to
project out the symmetric component,

< R|e−(βH)|R′ >B=

∑
℘ < ℘R|e−(βH)|R′ >

N !
(42)

The sum over permutations is performed by a Monte Carlo technique.
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To calculate the momentum distribution requires obtaining the off-diagonal
parts of the density matrix. In one method, an atom is displaced off the diagonal
by a distance r while the other atoms and permutation are held fixed while n(r),
(30), is computed. This method is very accurate at small r. In a second method, one
atom is again off the diagonal, but the distance between the two ends of the path for
that atom is allowed to vary. This allows the calculation of n(r) at large r [9].

Ceperley and Bernu [5] have found that the superfluid density observed in
PIMC simulations of solid 4He are strongly affected by the size of the system
simulated. A 48 atom system exhibits a 1.2% superfluid density at 55 bars pres-
sure while a 180 atom systems has zero superfluid density. They conclude that
the phenomenon observed by Kim and Chan can not be explained by vacancies
or interstitials in the equilibrium bulk 4He system.

4.1 Path Integral Ground State Calculations

Ground state expectations values at finite temperatures can be efficiently cal-
culated by using a path integral ground state Monte Carlo method [27]. The
integral equation in imaginary time equivalent to the Schrödinger equation is

ψ(R, t) =
∫

G(R, R′, t − t0)ψ(R′, t0)dR′. (43)

In the above equation, G(R, R′, t) is the propagator of (23). As was seen in the
previous section, this propagator is viewed as density matrix operator corre-
sponding to an inverse temperature β and simulated by path integrals.

The difference in the present method compared to PIMC is that a truncated
path on a trial wavefunction is considered instead of periodic boundary condi-
tions in imaginary time as the trace of G(R, R′, t) requires. Since the ground
state eigenfunction can be obtained by filtering a suitable trial function ψT

ψ0(R) = lim
t→∞ψ(R, t) = lim

t→∞

∫
G(R, R′, t)ψT (R′)dR′, (44)

the ground sate expectation value of any operator can be written as

〈O〉 =
〈ψt|G(t)OG(t′)|ψT 〉
〈ψt|G(t)G(t′)ψT 〉 . (45)

If the convolution of the density matrix of (41) is divided into N time steps,
β/N = t/N = δt,

G(R, R′, t) =
∫

dR1dR2 · · · dRN−1ρ(R, R1, δt)ρ(R1, R2, δt)ρ(RN−1, R
′, δt)

(46)
and substituted in (45), we obtain

〈O〉 =

∫ ∏N
i=0 dRiO(RM )ψT (R0)

(∏N−1
i=0 ρ(Ri, Ri+1, δt)

)
ψT (RN )

∫ ∏N
i=0 dRiψT (R0)

(∏N−1
i=0 ρ(Ri, Ri+1, δt)

)
ψT (RN )

, (47)
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where R0 = R, RM = R′ and RM is an internal time slice. For a converged
calculation, if the operator is placed on the extreme edges of the path one gets
a mixed estimator. If RM is in the middle, the exact expectation value of the
ground state is obtained. The paths are sampled using the Metropolis algorithm.
Samples that do not include coordinates of the trial wavefunction are performed
as in PIMC.

Galli and Reatto [13] have employed this formalism using the shadow wave-
function as ΨT (R) to study confined solid 4He. Their model system contains a
large static spherical object that uses a purely repulsive potential to prevent the
helium atoms from reaching the center of the simulation cell. As a consequence
of the periodic boundary conditions this correspond to a static lattice of hard
core spheres. They observe that the freezing pressure increases to about 38 atm.
This behavior is comparable to that found in experiments of 4He confined in
vycor [21]. In addition they observe that the disorder induced by the mismatch
between the 4He crystalline structure and the static hard spheres induces delo-
calization. This is a necessary condition to have off-diagonal long range order in
the system. Also, the presence of a Bose-Einstein condensate requires delocaliza-
tion of the atoms. These results could be relevant in explaining the observation
of a supersolid phase for 4He in vycor [21].

However, to date, no quantum Monte Carlo studies have observed delocaliza-
tion or Bose-Einstein condensation in the pure bulk solid 4He.
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