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Abstract
The femtosecond relaxation of initially excited electrons which interact with
phonons in presence of an applied electric field is studied numerically. The
evolution at such time scale cannot be described in terms of Boltzmann
transport. Here the Barker-Ferry equation is utilized as a quantum-kinetic
model of the process. The solution of the equation is investigated for quan-
tum effects introduced by the electric field. The numerical treatment of the
original formulation of the Barker-Ferry equation becomes difficult since co-
ordinates and time variables are coupled by the field. Thus no general time
independent integration domain in the phase space can be specified. A trans-
formation which decouples coordinates and time variables in the equation is
proposed. A randomized iterative Monte Carlo algorithm is developed to
solve the transformed equation.
Simulation results are obtained for GaAs material at different evolution
times. Effects of collisional broadening and retardation are observed already
in the field-less case. The intracollisional field effect is clearly demonstrated
as an effective change of the phonon energy, which depends on the field
direction and the evolution time. Moreover the collisional broadening and
retardation are affected by the applied field.
The observed phenomena are understood from the the structure and the
properties of the model equation.
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1 The integral equation

The Barker-Ferry (B-F) equation Ref. [1] accounts for the action of the elec-
tric field E during the process of electron-phonon interaction - the intracol-
lisional field effect. It has been shown that the effect plays a negligible role
in the regime of stationary transport Ref. [2]. Here we explore the transient
transport regime - the early time evolution of an initially excited electron
distribution ¢. Experimentally, such a process can be investigated by ultra-
fast spectroscopy, where the relaxation of electrons is explored during the
first femtoseconds after an optical excitation.
The B-F equation has the following integro-differential form:
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The damping factor I' is considered independent of the electron states k
and k’. This is reasonable since I' weakly depends on k and k' for states
in the energy region above the phonon threshold, where the majority of the
electrons reside due to the action of the electric field. An application of the
method of characteristics leads to the following integral form of Eq. (1):
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The equation obtained is rather inconvenient for a numerical treatment since
the solution for a phase space point k at instant ¢ is related to the solutions
at shifted points k — F(¢ — ¢”). The shift depends on the electric field and
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the time interval 0 < ¢” < t and hence no general integration domain can
be specified in the phase space. This problem can be solved by the following
transformation. A new variable k! and function f! are introduced such that:

K=k —Ft; K(r)=K +Fr;  f(kt)=fk +Ft1) < (K1),
where k; stands for k and k’ respectively. Then
f(kl (t”), t”) — f(ki + Ft”, t”) — ft(kia t”).

The transformation decouples the phase space and time arguments of the
cosine functions in S according to:
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The integral equation becomes (the superscript ¢ is omitted):
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The symmetry around the direction of the electric field can be used to re-
duce the number of variables in the equation. In cylindrical coordinates
(r,k,0) with r chosen normal to the field direction, the relevant variables
are x = (r,k). For zero lattice temperature S becomes a product of two
terms: S(z',z,t',t") = K(x,2")S1(z,2',t',t") where K contains a polar part
proportional to ((r — )2 + (k' — k)2)~2 and

hE
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At this temperature the classical solution has a simple behavior, which will be
the reference background for exploring the effects imposed by the quantum-
kinetic equation.

2 The stochastic algorithm

The equation is solved by a randomized iterative Monte Carlo algorithm.
A preliminary step uses the equality f(f dt’' fg dt" = fg dt” ftf, dt’ in order to
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assign the ¢’ integral to the kernels. This analytically formal operation in-
creases significantly the efficiency of the algorithm. The solution at the fixed
point (xg, o) is evaluated by N realizations of the random variable &_:
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i= j=
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Here v,(z,2',t,t") is the estimator of the integrals {ftf, dt'Sa(x,x',t',t”)}.
q(t") and p(z,x') are transition density functions in the Markov chain and
Pa, (@ =1,2) are probabilities related to the choice of one of the kernels. I,
determines the precision for truncation of the Neumann series of the solution.
The estimators v, are evaluated by /N; random values of # sampled with a
uniform density in (¢”,¢). An important point is the choice of the transition
density p to be proportional to the polar part of the kernels: p(x,z') = C((r—
™2+ (k — k')2)"2. In this way the variance of the Monte Carlo estimator
remains bounded which allows to control the precision of the results. The
algorithm can be generalized for finite temperatures in a straightforward way.

3 Results and Discussions

The simulation results are obtained for GaAs with material parameters taken
from Ref. [3]. The phonon frequency is a constant, w, and the initial condi-
tion is a Gaussian function of the energy. Classical electrons can only emit
phonons and loose energy equal to a multiple of hw. They evolve accord-
ing to a distribution, patterned by replicas of the initial condition shifted
towards low energies. The electrons cannot appear in the region above the
initial distribution.

Fig. 1 compares classical and quantum solutions on the cutline along the
field, (r = 0), for 200 femtoseconds evolution time. The quantity |k|? is pro-
portional to the electron energy in units 104m=2, where the negative values
denote the direction opposite to the field. Collisional broadening and retar-
dation are observed already at zero field There is a retardation in the build
up of the remote with respect to the initial condition peaks. The replicas
are broadened and the broadening increases with the distance to the initial
peak. This quantum effects are associated with the memory character of the



equation and the fact that the long time limit of the kernel does not recover
the classical delta function Ref. [4]. The electric field introduces important
effects in the quantum kinetics. The first replica peak of the 12kV/cm so-
lution is shifted in the field direction. For negative states the distance to
the initial peak increases. Moreover, the solution in the classically forbidden
region, to the left of the initial condition, demonstrates enhancement of the
electron population. This effects can be associated with the structure of the
first kernel of Eq. (2) which controls the electron transfer between the states.
Responsible for the build up of the peak is the first iteration term, obtained
from the first integral in Eq. (2) by replacing f with the initial condition ¢.
The cosine in Eq. (3) has permanent contribution to the solution if the pre
factor of (¢' —t") is around zero. Important become states with £’ to the left
of the k region of the first peak. For such states &' — k < 0 and since F' is
positive the energy of the field is added to the phonon energy. Accordingly
the solution behaves as in presence of a phonon with energy higher than Aw;
the distance between the first replica and the initial condition increases. In
the classically forbidden region k' — k > 0 so that the energy of the field is
subtracted from the phonon energy. The pre factor is small for states k& close
to the k' region of the initial condition. Accordingly the electron population
in the vicinity to the left of the initial condition increases. Just the opposite
effects must appear in the region of positive £ values. Indeed, the first peaks
are shifted to the right since now &' — k > 0 and the energy of the field is
subtracted from the phonon energy. In the semiclassically forbidden region,
to the right of the initial condition, the pre factor is large and there is no
enhancement of the electron population.

A comparison of the first replicas and the main peaks under the initial
condition shows that the field has a pronounced influence on the collisional
broadening and retardation. As demonstrated by the experiments, this ef-
fects depends on the field strength and direction.

The field term in Eq. (3) depends also on the factor (¢'+¢"). Since the two
times are integration variables bounded by ¢, the shift of the replicas must
depend also on the evolution time ¢. Fig. 2 compares quantum solutions for
different evolution times. The electric field is 6kV/em. This dependence is
well demonstrated on the left part of the figure by an increase of the distance
to the main peak with the evolution time. On the right part of the figure,
for positive k£ values, the dependence is suppressed by the retardation effect.

We conclude that the intra collisional field effect is well demonstrated
in the early time evolution of the electron-phonon relaxation. The electric



field causes shift in the replicas, population of the semiclassically forbidden
regions and influences the broadening and retardation of the solution.
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Fig. 1 Classical and quantum solutions at 200 femtoseconds evolution
time. The electric field is 0kV/cm and 12kV/cm.

Fig. 2 Quantum solutions at 100, 200 and 300 femtoseconds evolution
times. The electric field is 65V /cm.
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