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Abstract

An efficient backward Monte Carlo estimator and a corresponding algorithm for
solving a quantum-kinetic equation describing an ultrafast semiconductor carrier
transport is proposed and studied. In order to obtain the electron energy distribution
for long evolution times, variance reduction techniques are applied. The balancing
of errors (both systematic and stochastic) and computational cost are investigated.

The presented algorithm is implemented using the SPRNG random number gen-
erator and one by L’Ecuyer based on a combination of two linear congruential
sequences.

Numerical results for long and short evolution times are obtained. They show
that the SPRNG random number generator is preferable to that by L’Ecuyer.

Key words: Monte Carlo estimator, Monte Carlo algorithm, Quantum-kinetic
equation, Electron-phonon quantum transport, Random number generator

1 Introduction

In the last several years the development of device modeling physics involved
such small space and time scales that the applicability of semiclassical trans-
port fails and a quantum description is needed. The carrier-phonon kinetics
beyond the semiclassical Boltzmann equation (BE) has been investigated in
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many publications for the case of applied electrical fields [1,10,18,19] and for
optically generated carriers [8,16,22,25,27]. In general, the solutions of the
equations describing quantum processes can be found only numerically.

It is well-known that the Monte Carlo (MC) method is a numerically efficient
way for charge-transport modeling in semiconductors [6,7,9,12,15,20]. In this
work a quantum-kinetic equation which accounts for the memory character of
the electron-phonon interaction is solved by a stochastic approach.

The physics model includes a femtosecond relaxation process of optically ex-
cited carriers in an one-band semiconductor [22], which allows us to concen-
trate on memory effects related to the energy-time uncertainty in the electron-
phonon interaction. The process is described by the zero field Barker-Ferry
equation [1]. The electron-phonon interaction is switched on after a laser pulse
creates an initial electron distribution. The set of kinetic equations for the
electron dynamics is given in [22].

Under an assumption for equilibrium phonons, an integral formulation of the
quantum-kinetic equation is obtained in [17]. The suggested MC estimator in
[17] solves the equatio n it considers only for short evolution times and it fails
for long evolution times because the stochastic error increases drastically.

In this work we suggest a efficient backward Monte Carlo estimator and a cor-
responding algorithm for solving the quantum-kinetic equation from [17]. Here
the advantage is that this estimator computes the electron energy distribution
for long evolution times. Also the computational cost for short times decreases
very fast. These results are achieved using variance reduction techniques such
as conditional Monte Carlo and reducing the dimensionality.

It is well known that with MC methods, when using random estimators, the
results are obtained with statistical errors [11,21,23]. In the case when the MC
method approximates some deterministic iterative method there are two errors
- systematic (a truncation error) and stochastic (a probability error) [3,14].
The systematic error depends on the number of iterations of the used iterative

method, while the stochastic error depends on the probabilistic nature of the
MC method.

Consider the following functional:

I =(9.) = [ 9() f@)da, 1)

G

where the domain G C IR? and a point z € G is a point in the Euclidean
space IR®. The functions f(z) and g(z) belong to any Banach space X and
to the adjoint space X*, respectively, and f(x) is an unique solution of the



following Fredholm integral equation in an operator form:

f=IK(f)+¢. (2)

Consider the iterative process for the integral equation (2):

fl:K(flfl)—i_(ﬁa l:152a"'a (3)

where [ is the number of iterations. In fact (3) defines a Neumann series
fi=¢+ K@) +...+ K (@) + K'(fo), 1>1,

where JK' means the [-th iteration of JK. In the case when the corresponding
infinite series converges then the sum is an element f from the space X which
satisfies the equation (2).

iFrom (2) and (3) one can get the value of the truncation error. If fo = ¢ then
fi—f=K'(6~-f).

Now, a random variable O is said to be a MC estimator for the functional (1)
if the mathematical expectation of © is equal to J(f): E© = J(f). Therefore
we can define a MC method

_ 1 .
6=—3 00 L (), (4)
N
where O ... ©W) are independent values of © and 2, means stochastic

convergence as N — 00. The well known “law of three sigmas” gives the rate
of convergence (see [11,23]):

vVar®
\/N

Thus, as N increases, this statistical error decreases as N~'/2. Here Var(0) =
E©? — E?0 is the variance.

~ 0.997.

P(lo—J(f)) <3

The relation (4) still does not determine the computation algorithm: we must
specify the modeling function (sampling rule)

®:F(ﬂ1,52,---a)a (5)

where (1, f3s,..., are uniformly distributed random numbers in the interval
(0, 1). It is known that random number generators are used to produce such



sequences of numbers. They are based upon specific mathematical algorithms,
which are repeatable and sequential.

Now both relations (4) and (5) define a Monte Carlo algorithm for estimating
J(f).

The case when g = §(x — ) is of special interest, because we are interested
in calculating the value of f at x(, where zy € G is a fixed point.

It is clear that every iterative algorithm uses a finite number of iterations /. In
practice we define a Monte Carlo estimator ©; for computing the functional
J(f;) with a statistical error. On the other hand ©; is a biased estimator for
the functional J(f) with statistical and truncation errors.

We note that the number of iterations can be a random variable when an
g-criterion is used for truncating the Neumann series or the corresponding
Markov chain in the MC algorithm.

The paper is organized as follows. In Section 2 the quantum-kinetic equation is
described and a new integral form is introduced by reducing the dimensionality
in time integral. Convergence of the corresponding Neumann series is proved
in Section 3 and the backward MC estimator is introduced. It is proved that
the variance of this estimator is bounded. In Section 4 the MC algorithm
is presented as decomposition and inverse-transformation techniques for the
transition density function which is used for calculating the sequence of points
in the Markov process. Numerical results for the electron energy distribution
at different evolution times (until 400 fs) and for the computational cost of the
algorithm are given in Section 5 using two types of random number generators.
Concluding summary is made in Section 6.

2 Formulation of the problem

The three-dimensional one-band electron quantum kinetic integral equation
has the following form (see [17]):

t t
f(k,t) = / dt’ / dt" / PRSK, K, ¢ — ") f(K', 1)
0 0
- S(k’ kl’ tl - t”)f(k> t”)} + ¢(k)7 (6)

with a kernel
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X {(n+1) cos(Q k(t = t')) + ncos(Qw (t —t'))},

S(k,, k, t— t,) = |26_Fk’,k(t_tl) (7)

where k is the momentum, f(k,?) is the distribution function, ¢(k) is the
positive initial condition. In the kernel (7) $wx = (éw — ex — hw)/h, where
w is the phonon frequency, /i is the phonon energy and ey = h°k? /2m is the
electron energy. The coupling

[ 2r¢?hw (1 _1) 1 3
Jie—de = 1 Vv € co €s (k’ - k)2

applies to the Frohlich interaction with LO phonons, which means a fixed
phonon energy with optical (€5) and static () dielectric constants and the
normalization volume of the crystal, V.

The Bose function n = 1/(exp[hw/KT] — 1), where K is the Boltzmann con-
stant and 7" is the temperature of the crystal, corresponds to an equilibrium
distributed phonon bath. The damping 'y x = 'y 4 Ik is related to the finite
carrier lifetime for the scattering process:

V 1

1
— 3 2
Fk = /d k1237r2h E:t ||gk’—k|| (5(81(/ — €k + hw)(n + 5 + 5) (8)

By using the indentity ffdt' ¢ dt” = [Ldt" Ji, dt', equation (6) can be written
in the following form:

t t

fk,t)= [ dt" | &K [{[ dt'SK Kk, t' —t")}f(K,t")

J o]
t

([ drS K¢~ )}, 8] + 6(K) (9)

t”

This form is similar to the BE, (see [17], where it is discussed in detail). Note
that the “scattering term” { [ dt'S(k, k', — ")} (if a probabilistic interpre-
tation is possible) depends on the time which is responsible for the memory
character of the quantum equation (9). In contrast to the BE, the scattering
term, being provided by a long time limit (called the golden rule), does not
depend on the time.

Equation (9) allows an analytical evaluation of the “scattering term” [17],
since
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Using this transformation equation (6) can be writen in the following form:

Flk, )= / dt" / PRC, K, t — ") f(K', 1)
— ;)C(k, k' t—t")f(k,t")} + o(k), (10)

with a kernel

2

KK,k t — ") = 2q ;dh
m

1 1

€ oo €s

ﬁ (1)

Q U "
X ((n +1) Ly [1 + (Fk K sin(Q i (t — 1)) — cos(Que 1 (t — t"))) e Tt )]

Kk

Q U 1
+ nLy [1 + (Fk’k sin(Qew (t —t")) — cos(Que e (t — t"))) e T (= )D :

K,k
. . . I'yr
where Ly s is a Lorentzian function, Ly x = ﬁr Thus the kernel (11)
K kK k

can be decomposed into a time-independent part and a part which depends
explicitly on the time.

One way of obtaining the long-time-scale solution of this quantum kinetic
equation is presented in [16] where the time-dependent terms in the kernel
(11) are removed. For a long time limit, ¢ — oo, the terms involving time
which contain the memory character of the equation vanish. Here we treat a
simulation method as we save the time-dependent terms in the kernel (11).

3 A backward Monte Carlo estimator
Let us specify that the wave vectors k, k' belong to a finite domain G with a
volume V.

Consider an equation (10) that can be written in the following second-order
Voltera-Fredholm form:



Flk, 1) = / dt" / PURC, K, t — ") f(K, ")} (12)

- / dt" / PRI K — 1) f (K, 1)) + (k).
0 G

We note that the kernel in (12) is polar since it can be rewritten as

AK k, t — t")

]C(kla k: t— t”) = |k/ - k|2 ’

(13)

where A(k',k,t — ¢") is a continuous function in the domain G x G x [0, ¢].
Therefore, the following inequalities hold (see [26]):

max max/d3k'|lC(k',k, t—t")] < M;, max max/d3k'|lC(k, k' t—t")| < My,
0<"<t ke ) 0SSt keG J

where M; and M, are positive constants. Let M = max{M;, My}, then the
following proposition holds.

Lemma 1 Consider the following iterative process for the equation (12):

t
filk,t) = / dt” / PR K, t— ) i (K, 7)) (14)
0 G

t
= [ [ PR K~ ) s (6, 8)} + (),
0 G
fok,t) = ¢(k), 1=1,2,...
If ||¢|| = max, g o(k) then

(2M)7t7
it

[filk,t) — o(k)| <||¢] ; (15)

Proof:  To prove inequality (15) we will use induction. For [ = 1 we may
quickly verify that
i
|f1(k,t) = folk, )] < [|6]|(2M) 77

Assume that we have the following estimate for [ :

1

fille, t) = fiea (e, )] < | (2M);.



For [ +1 we obtain
|fl+1(k’ t) - fl(k’ t)|

t i
< / dt" / PUCK K, ¢ — ") fi(K, 1)} — / dt" / PURCK, Kt — ") fi(k, )}
0 G 0 G

t i
- / dt" / PRI K, t— ) fiy (K, 7)) + / dt" / PR Kt — ) fioy (K, )}
0 G 0 G

t
S /dtll/dSkIUC kl k t— t”)| |f (kl t”) fl—l(k,,t”)‘
0

O\w

/ KKK Kt — )] | fioa(, £") — filk, )]
G

t t”l

< [arm ol + / i’ My | (220)

0
B l I+1 l I+1 L 1
= MillollM) 5y + Malléll M) < I6lleM) ™

and further
| fi(k, ) — ¢(k)|
< |fik,t) — o(k)| + | fo(k, t) — ( )|+ A 1filk,t) = fima(k, )|

< o 3 B
j=1

This completes the proof. O

Lemma 1 yields that the iterative process (14) converges to the solution of
the equation (12) absolutely, because the corresponding Neumann series is
bounded by the summation of the series ||¢||exp(2Mt).

Now let us construct a backward Monte Carlo estimator for the solution of
the equation (12) at a fixed point k at time ¢ using backward time evolution
of the numerical trajectories.

Define a terminated Markov chain
(Iio,To)—>...—>(l€j,7'j)—>...—)(l€l,7'l), (16)
such that every point (k;,7;),7 = 1,2,...,1 is chosen in the domain G X

(0,7j_1) in accordance with a transition density functions r,(k, ¢, k', "), (o =
1,2) which are tolerant! to both kernels K (k,t k', ") = K(k',k,t — ¢") and

L r(z) is tolerant of g(z) if r(x) > 0 when g(z) # 0 and r(z) > 0 when g(z) = 0.



Ky(k,t,k',t") = —K(k, k', t—1"), respectively. The parameter [ is chosen from
the condition 7; < €, where ¢ is a very small positive number.

Consider the following estimators

vo = ¢(ko),
Q1 ey — Kal(KO’T())K/le) .- -Kaj(ﬁj*177—j*17l{j77-j) (K)O-[j)
J PayToy (I{O’TOaKlaTl) .- 'pajra]‘(l{/jflaTj*I’K/jiTj) 77
where
, Ki), if a;=1 2
o) = 4 o) T and pa, 20, pay =L = 1,2,

d)(lﬁj_l), if a; = 2 aj=1

Thus the biased backward Monte Carlo estimator for the solution of equation
(12) at the fixed point (k,t) = (ko, 7o) has the form

l
@l[lﬁ)o, ’7'0] =1+ Z Z/;q’m,aj . (17)

Jj=1
Using N independent samples of the estimator (17) we obtain
_ 1 XN
O1[ko, T0] = N Z(GI[HO,TODi ~ f(ko, o).
i=0
For the biased estimator of order ¢ we have (see [14]):

|EOy[ko, To] — f(Ko, T0)|> < 162

where ¢; is a positive constant. Now following [14] the root mean square de-
viation is defined by the relation

E(©y[ko, 0] — f(k0,m0))* = Var(©[ko, 10]) + (f (Ko, 70) — EOi[ko, 70])*.

Hence
B@ilso, ] F s, 0)? = L OV (0, 7) — B, )
<®pa=p2 (18)

where g is the desired error and dy is an upper bound of the variance. There-
fore, in order to obtain the error of order u the optimal order of the quantities

N and € must be
N=0("?), e=0(u).



The inequality (18) will be clear if we prove the variance is bounded. For this
goal it is enough to prove that the second moment of the estimator (17) is
bounded.

Lemma 2 Let us choose the probabilities and the transition density functions
in the following way:

| Kok, t, k', ")

a = ) = ]-: 2) 19
P = R (e 0, ) + Kol 200, 0] 19)
K.k, t, Kk, t"
ro(k, t, K t") = — L ) , a=1,2. (20)
Jo dt" [ dEk!'| Ko (K, t, k!, )|
Then the following estimate holds
EO? [k, 1] < 2||¢]|2e2MY”. (21)
Proof: First, let us prove the inequality
P (2M2t2)
E(v; ) < |lo]? (22)

(27 = D!

using again induction. For j = 0 it is true, F(14)? < ||4||>. For j = 1 we have

To=t

B = [ dn [ (08 pasran (50, 0, 51, )
0 G

pal'f’al Ko, To, K1, Tl)

B / /€0,To,l£1,T1)¢ (kTY)
- fin fan®

t t
= [ar / (1Ko, 7o, s 7)| + [ K (Ko, o, k1, 7)) 2(68) [ dr [ diy [ (0, o, 1,71)
0

t t t
< g (M [an+nm [ dﬁ) M [ dry = o202
0 0 0
Assume that inequality (22) holds for j = I. Therefore for j = [+ 1 we obtain
B ™)

’7'07

Qp41\2
/ dTl/d/‘v'l /d7'1+1/d/‘€l+1 Vl+1 ) PaiTay (50a7—07’€1:7—1)---pal+1ral+1(’£la7—l7K;l+1a7—l+1)

10



t
2 2/, .%1+1
K (/io,To,/ﬁ,ﬁ al+1 /‘ﬂlaT/il+1,Tl+1)¢ ("ﬂl+1 )
= dT1 dlﬁ dTH_l dIiH_l
0 G

PaiTay (K:()a To, K1, Tl al+1,ral+1 (K/la Tl Ki+1, TH—I)

t
— / / I{/O’TO) K;177—1) E(Vlaz...al+1)2
0

quTOq Ko, Tos K1, 7—1)

t
< [an [ dny (1K (o, 70, 1, m) | + [ Koo, 70, 1,71)])
0 G

(2M2
(2)

2
< [l4)1? (QM/dTlL)'J M/dﬁ

(2M2)i 2! arepn
(25— D1 (2j+1) 2j+ 1

< gl ,,] / dn / ks K, (s 7o 1, 71)|

= llol*2M7t = ¢l

On the other hand
l 2 [ 2
912["60;70] =|v+ Z”Jqlmaj < Z ‘ngl"'a” = ‘@oo[’anTOHQ-
j=1 7=0
Further
Ocolko, 7o]|” = { D_ Iy ] < D |y |y .

Jj=0 2,j=0

The last inequality can be written in the form

Osolrio, 7ol < D @ (Jpfo % a ) (|5 ¥ ]a ),

i,j=0

where a € (0, 1). Using inequality (2uv < u? + v?) we have

i:: (( S ())

a?

[\Dlr—‘

|Ooolri0, To]|” <

00 ) o 1 % )
= 20 = g | o)+ a0
—a =

j=0 i=0
Finally

i=1

ad (2M?%#? 2 2,2
(||¢||2+||¢|| > a i 1)),,) < O _onrresa

1 > ] al...045
E@%[Iio,ﬁ)] S m (E(y0)2+ZaJE(I/j J)2>
(25 — (1—a)

11



If we choose a = 1/2 then we obtain (21). This completes the proof. O

Taking into account that the kernel can be presented as equation (13) we can
note that estimate (21) holds for tolerant transiton density functions of the
kind

Aok, 8, k', )

ok 1,k ") = A
T ( 7t’ 7t) |kl—k|2 7

a=1,2, (23)

where A\, (k,t,k’, ") are arbitrary continuous functions in the domain G x G x
[0,¢] and A is the normalized constant. In this case only the constant M will
be different in estimate (21).

Let us note that the above choice (20) of the transiton density function to be
proportional to the kernel leads to a reduction of the variance and such density
functions are called “almost optimal” densities (see [2]). Thus if the functions
Aok, t, K t"), (o« = 1,2) are chosen to be proportional to the contribution
from the kernels then the corresponding transiton density functions (23) will
lead to a reduction of the variance, too. The choice of the probabilities (19)
can be done on the other way, too, for example, using any norm of the kernels.

4 A Backward Monte Carlo algorithm

Before we describe the algorithm let us present equation (12) in a simpler form
using spherical coordinates. Thus, we consider an one-dimensional integral
equation concerning momentum k.

Suppose that the domain G is a sphere with radius ). Denote with k£ and &'
the norm of the corresponding vectors k and k. Let 6 be the angle between
this two vectors and & axis be oriented along k. Using spherical coordinates
we have d°k’ = k"?sin 0dk'dodE, 0 € (0,7), £ € (0,2m).

Taking into account that

2w ™

k™ sin 0 Ko k+E
d¢ = or, /de R (E
0/5 " (k'2+k2—2kk'cos9> k n(\k—k'|>

equation (12) and the kernel (11) can be rewritten in the form

t Q
F(k,t) = / dt" / Ak LK (k8 K ) F (R ) (24)
0 0

12



t Q
+ / dt" / AR LK (k, K ) (ko 47} + 6(k),
0 0

where
Ki(k,t, k' t") = k”IC(K' ke, t —t"), Kok, t, k', t") = —k?K(k, k', t —1")

and

1 1

9
T*w
Kk kt—t")="—
(K, k, ) wh

L I k+ k'
k'k |k — K|

Q ! "
X ((TL + 1)Lk’,k ll + <Fk ok S’in(le,k (t - t”)) — COS(Qk/,k(t — t”))) eirk"k(tit )]

Kk

€ oo €s

Qg .,
+ nLk,kl [1 =+ (Fk’k sin(Qk,k/ (i — t”)) — COS(Qk,k/ (t — t”))) e_Fk,kl(t—t )]) .

k&’
To complete substitution of the variables we have to rewrite equation (8) in
spherical coordinates, namely

2 ™ Q
k" sin 0 qiw
— !
Fe= O/dgo/deo/dk (k’2+k2 —2kk’cos0> 4

X l(s (%(lc’2 — k) + hw) (n+1)+46 (%(k”" — k%) — hw) n] :

In addition using the following properties of the Dirac delta function [26],

1 1

€ oo €s

1 b
d(ax £b) = 5(5(:1: + E) and /dxé(x —z9)F(z) = F(x)
with a = h%/2m and b = hw, we get

alnt1) | (,H_, /lc2—w1> Lan (k+\/k2+w1) i k2> w

T — k Vw1 k N
=
k++/ k24w . 2
%m(i %) if k2 < w,

where w; = 2mw/h, and ¢, = (MG*w/h?)|1 /e — 1/€,].

In order to describe a concrete realization of the backward MC algorithm for
the estimator (17) we have to know how to model the transition (k,t) — (£, t")
in the Markov chain. In other words, we must specify sampling rules using a
transition density function which is tolerant to the kernels under consideration.

Let us choose the transition density function in the following way

ro(k,t, k' ") = r(k,K)r(t, "k, k'), a=1,2,

13



where

K (kK
r(k, k) = O 1<‘k k'|> (25)

is a normalized probability density function (C is the normalized constant)
and

Ty e T (0=t
1 — e Trwt

r(t,t"/k, k') = (26)

is a normalized conditional probability density function. The transition k —
k' can be modeled using a decomposition MC technique. For this goal the
function (25) can be expressed as an infinite weighted sum of other density
functions.

Since,
k’l <k+k> 2Y%0 b, i 0K <k o
|k — & 2T i, i k<K <Q
and substituting
2 :
. @it (@i+3)° if 0< k' <k
Ci=9 2505
44 1 : /
(Q—k) [2k+(Q+k)1n(Q+k)] if <k <Q
(2i—1) [Q;@’f)ﬁ;;_l ). i k<K <Q
the density function (25) can be written
=Y Ciri(k,k'), where C; >0, > C;=1, (28)
i=0 1=0
where the r;(k, k') (i = 0,1,...,) are density functions, too. Now we need

three uniformly distributed numbers, 81, 52, B3 € (0, 1) to model the transition
k — k'. The first two numbers are used to choose the series from (27) and to
determine the number “/” and r;(k, k') from (28). Finally the new momentum

14



k' in the Markov chain is calculated by formulas

k(Bs) 771, if 0<k <k

ki k<K <Q
[1-B(1(k/ @)%~ 1)] T-T

k' =

In practice, decomposition MC techniques are applied for finate number terms
in the series (28).

To complete the transition (k,t) — (k',t") we need again an uniformly dis-
tributed number 5 € (0, 1). The new time t” € (0, t) can be found by applying
the inverse-transformation technique for (26). Thus we get

1

" = Iy ——In (B(e"x+" — 1) +1).

The backward MC algorithm for finding a solution in a fixed point (k,t) of
the equation (24) is as follows:

1. Choose any positive small number €.

2. Simulate N independent random paths

(4) i), (9) () (Z))

(Héi),To)—)...—)(K) T)-) _>(K:l sTr 7 ), 7;:1’"'7N7

(
3Ty
of the Markov chain (16) with starting points (m(()),TéZ)) = (k,t) in accor-

dance with the transition density functions (25) and (26). The random paths
(4)

terminate when 7,7 < €.

3. Find l
(Gl[’fO;TO VO Z+Z PR ’aJ Za ':1,...,N,
7j=1

where (1p); = (/5(/{8“) and

(l/]ql,...,aj)(i)
Kal(mé),Té),n§z),sz)).. K, (Kgi)l, g(l)b’fgz) (Z)) ¢(z‘)(,€%')

I J ]
~ (6l 5P) (7 7O 16 D) p‘“rm D S (0, r P D RDY
=1

i=12,....01, a;=1,2, ey ]e

The probabilities pgj?, (aj = 1,2) are chosen in accordance with equation (19).

4. Calculate
1 N

6l[lﬂo, 7'0] = N ;)(@l[/fo, To])i

15



which estimates the solution f(k,t).

The computational complexity of the presented algorithm can be measured
by the quantity
F(N,ty,l) = N x ty x E(l),

where N is the number of the random paths followed; E(l) is the mathematical
expectation of the number of transitions in the Markov chain (16) and ¢, is
the mean time for modeling one transition.According to (18) N and E(l) are
connecting with stochastic and systemtic errors. The time, %y, depends on the
complexity of the transition density function and the choosing of the random
number generator (r.n.g.). When the r.n.g. has good random properties such as
uniformly distributed, uncorrelated, have a large period of repetition and can
be generated rapidly using limited computer memory, then the computational
cost of the MC algorithm can be decreased and the accuracy of the MC solution
can be improved. It is strongly recommended that all simulations be done with
two or more different generators, and the results compared to check whether
the random number generator is introducing a bias.

The backward MC algorithm under consideration is realized using two gener-
ators that are recommended by many authors for large-scale scientific compu-
tations. The first r.n.g. is a combined linear congruential generator (CLCQG)
with parameters recommended by P. L’Ecuyer [4,5]. He suggests for combining
the following two generators:

x5 = 400142, 1 mod 2147483563, ys = 40692y, 1 mod 2147483399.
This would produce
ws = (x5 — ys) mod 2147483562.

This CLCG generator has a period 2.306 x 10'® and its structural properties
are investigated in [5].

The second r.n.g., the Scalable Parallel Random Number Generator (SPRNG)
Library is a lagged Fibonacci generator using addition and it provides paral-
lelized independent sequences [13,24].

In fact, we need four uniformly distributed numbers between 0 and 1 to model
the transition (k,t) — (£',t") and one uniformly distributed number to choose
the probability (19) in order to construct the estimator in step 3 of the al-
gorithm. Therefore we can use five independent sequences from the SPRNG
Library.

The results obtained for computational cost of the MC algotithm and accuracy
of the MC solution using CLCG and SPRNG generators are compared in the
next section.
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5 Numerical results

The results discussed in the following have been obtained by the backward
Monte Carlo algorithm under consideration for equation (24). Material pa-
rameters for GaAs have been used: the electron effective mass is 0.063, the
optimal phonon energy is 36meV’, the static and optical dielectric constants in
the Frohlich coupling are ¢, = 10.92 and e,, = 12.9. The lattice temperature
is zero. The initial condition at ¢ = 0 is given by a function which is Gaus-
sian in energy and corresponds to a 87fs laser pulse with an excess energy
of 180meV, scaled in a way to ensure peak value equal to unity. The quan-
tity presented on the y-axes in Figs. 1-8 is k = f(k,t), i.e. it is proportional
to the distribution function multiplied by the density of states. It is given in
arbitrary units. The quantity k x k, given on the x-axes in units 10'/m?, is
proportional to the electron energy. The backward MC algorithm was imple-

Fig. 1. The electron energy distribution & * f(k,t) versus k% k for long evolution times.

The relaxation leads to a time-dependent broadening of the replicas. € = 0.0001.
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mented in C and compiled with the “cc” compiler at optimization level “-fast”.
Numerical tests on Sun Ultra Enterprise 4000 with 14 Ultra-SPARC, 250 MHz
CPUs running Solaris were performed. Fig.1 shows the electron distribution
at long evolution times (until 400 fs) The simulation domain is between 0 and
Q@ = 66 x 107 /m. The product k * f(k,t) is calculated in 60 points.

The electron energy distribution for short evolution times is presented on
Fig.2. Here the simulation domain is between 0 and @ = 100 x 107/m. The
product k * f(k,t) is calculated in 100 points. The solutions for ¢ = 10fs,t =
20fs,t = 30fs,t = 40fs and t = 50fs is calculated for ¢ = 0.0001 and
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Fig. 2. The electron energy distribution k x f(k,t) versus k  k for short evolution times.
Electrons appear in the semiclassically forbidden region above the initial condition.
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Fig. 3. Comparison of the electron energy distribution & x f(k,t) versus k % k obtained
by two different e-criteria for termination the Markov chain. For ¢ = 100 fs, N = 10000

and for t = 200fs, N = 250000.
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N = 50000. The mean computational cost for our algorithm is better than
the computational cost of the MC algorithm presented in [17]. Let us note that
the number of the realizations for the MC estimator in [17] is N = 1000000.
The obtained results show that electron appear in the semiclassically forbidden
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Fig. 4. Comparison of the electron energy distribution k * f(k,t) versus k % k obtained
by two different e-criteria for termination the Markov chain. For ¢ = 150 fs, N = 50000
and for t = 250 fs, N = 1250000.
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region above the initial condition.

Figs. 3-4 shows dependence of the solution for the electron distribution when
¢ = 0.0001 and € = 0.000001. The evolution times for the solutions on Fig.3
are t = 100fs,t = 200fs and the realizations of the MC estimator are N =
10000, N = 250000, respectively. Results for ¢t = 150fs,t = 250fs and N =
50000, N = 1250000, respectively are plotted on Fig 4. Comparing the MC
solutions for the electron distribution using the above e-criteria we see that
they approximately coincide. In fact, these comparisons show that we have
good balance between the stochastic and systematic errors and we don’t need
to decrease €.

Let us consider the results for the computational cost (CPUtime per point)
of the backward MC algorithm in Table 1. Here,

on = %\l% (i @l[k,t]> Bk, 1]

is the estimate for the standard deviation o = y/Var(0,[k,t]) which is calcu-
lated over all 60 points. The results show that the average number of transi-
tions in the Markov chain increases very slowly when ¢ decreases. Also, the
standard deviation (or the variance) increases exponentially when the evolu-
tion time increases, while the rate of convergence of the iteration process (
or El) is changed very slowly. This results are in accordance with the theo-

19



retical result in Lemma 1. Therefore, the computational effort increases for
long evolution time, because we need more realizations of the MC estimator
in order to improve the statistical error. The dependence of the MC solution

Fig. 5. Comparison of the electron energy distribution &k * f(k,t) versus k % k obtained

by using of SPRNG and CLCG random number generators when the number of the

random paths in the Markov chain is fixed. N = 250000,¢ = 200fs, e = 0.0001.
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Fig. 6. Comparison of the electron energy distribution & x f(k,t) versus k * k obtained
by using of SPRNG and CLCG random number generators when the number of the
random paths in the Markov chain is fixed. N = 1250000,% = 250fs,c = 0.0001.
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on the SPRNG and CLCG random number generators is shown on Figs. 5-8
when ¢ = 0.0001. While the computational cost (CPU time for all 60 points)

Fig. 7. Comparison of the distribution k * f(k,t) versus k * k obtained by using of
SPRNG and CLCG generators for approximately one and the same computational cost
(CPUtime). N = 250000 and N = 300000, respectively. t = 200fs,e = 0.0001.
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Fig. 8. Comparison of the distribution k % f(k,t) versus k % k obtained by using of
SPRNG and CLCG generators for approximately one and the same computational cost
(CPUtime). N = 1250000 and N = 1500000, respectively. t = 250fs,e = 0.0001.
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of the MC algorithm using the same generators is presented in Table 2. The
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curves that are plotted on the Figs. 5 and 6 are cases when the number of the
realizations NV is fixed and t = 200fs and ¢ = 250 fs, respectively.

Table 1
Computational complexity per one point at long evolution times.

e = 0.0001 e = 0.000001
t N El ON CPUtime El oN CPUtime
100fs 10000 14.9876 0.48796 2.50s 19.5855  0.46879 3.43s
150fs 50000 15.5150 1.38206 13.04s 20.1182  1.40232 17.30s
200fs 250000 15.9040 3.87776 1m07.99s 20.5107  3.84575 1m?24.59s

250fs 1250000 16.2287 10.7811 5m46.17s 20.8338  11.2736 7m10.20s

300fs 7500000 16.5263 31.3913 35m36.24s 21.1318  33.3502 38mb9.63s

350fs 45 mln 16.8282 100.645 3h37m07.61s 21.3427 106.4081 4h32m05.74s

400fs 200 mln 17.1659 330.064 16h27m9.92s - -

The results show the “noise” in the MC solution is more when the CLCG
generator is used, but the computational cost is less, (see Table 2).

Figs. 7 and 8 show the dependence of the solution on the SPRNG and CLCG
generators for approximately the same computational complexity of the algo-
rithm, (see Table 2).

Table 2
The computational complexity of the algorithm using SPRNG and CLCG generators.
SPRNG CLCG CLCG
t N CPUtime N CPUtime N CPUtime
200fs 250000 1h07m39.67s 250000 57m08.25s 300000 1h07m 41.58s

250fs 1250000 5h46m10.08s 1250000 4h50m55.81s 1500000 5h49m 37.81s

It is clear that the “noise” decreases when the CLCG generator is used with
more replications, but it still exists. The solution is more smooth when the

SPRNG is used. Therefore, the SPRNG generator is preferable to the one by
L’Ecuyer for solving this problem.

6 Conclusion

An efficient backward Monte Carlo estimator and a corresponding algorithm
for solving a Voltera-Fredholm integral equation describing a quantum-kinetic
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model to the carrier dynamics in photoexcited semiconductors have been
proposed and studied. The equation has been reduced from the two time-
dimentions to one time-dimention integral form and convergence of the corre-
sponding Neumann series has been proved. It is clear that rate of convergence
is better than rate of convergence for the two time-dimensions integral form
presented in [17].

The random estimator has been constructed by using backward time evolution
of the numerical trajectories. It has been proved that the variance of this
estimator has been bounded.

The transition density function in the Markov chain has been chosen to be
proportional to the contribution from the integral kernel and the conditional
MC aproach has been applied to it. It is well know that this choice reduces the
variance of the estimator. A backward MC algorithm has been presented and
decomposition and inverse-transformation techniques are used for calculating
the sequence of points in the Markov chain. The algorithm has been tested
for the GaAs material parameters using SPRNG and CLCG generators.

Numerical results for the electron energy distribution at long and short evolu-
tion times has been obtained. Computational complexity of the algorithm has
been investigated, too. The results for computational cost and for the accu-
racy of the MC solution show that SPRNG generator is preferable than CLCG
generator. The advantages of the studied algorithm lie in the direct valuation
of the functional value in fixed phase space points without being necessary to
solve the equation in the whole simulation region.

Finally we would like to mention that the future research of the quantum-
kinetic problem under consideration could be developed in the following di-
rections: 1. Consideration of the more realistic physics model with a non-zero
electric field; 2. Investigation of a nonlinear electron quantum transport in
one-band semiconductor for long evolution times and comparison with the
obtained results in the linear case; 3. Creation of parallel Monte Carlo al-
gorithms and investigation of the sensitiveness of the solution using various
random number generators.
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