

Introduction to Posix threads

What is a thread?
● A sequence of machine instructions.
● The smallest unit of processing that a scheduler works

on.

Threads and processes -
● A process (created by a fork() command) can have

multiple threads of execution which are executed
asynchronously.

● Every process has at least one thread

Single thread vs many threads in a process

Differences between a thread and a process

● Processes do not share their memory address space while threads
executing within the same process share the address space.

● Processes execute independently of each other. The
synchronization between processes is taken care of by the operating
system. Thread synchronization is taken care of by the process
which is executing the threads.

● Context switching between threads is fast as compared to context
switching between processes.

● Interaction between two processes is achieved through inter-
process communication. Threads executing under the same
process can communicate easily as they share most of the
resources.

Threads in a process share many resources

● Process instructions – all threads can access
all instructions

● Global data
● open files (descriptors) that have been opened

prior to the thread creation
● signals and signal handlers
● current working directory
● User and group id

Unique attributes of a thread

● Thread ID which is different from the pid. It is
of type pthread_t

● A set of registers and a stack pointer
● A stack for variables local to the thread and

return addresses
● A thread specific signal mask
● The thread priority

How to create threads in a process

A process always has a default thread. To create additional threads

#include <pthread.h>

int pthread_create(pthread_t *tidp, const pthread_attr_t *attr, void
*(*start_func)(void), void *arg)

1) A pointer to the thread ID.

2) What type of thread. A default type can be created by setting to
NULL.

3) The name of the function to execute which is a pointer.

4) The arguments to the function that the thread will execute.

How a thread terminates

● If the thread uses return() from its starting function.
● If it is canceled by some other thread. The function

used in that case is pthread_cancel().
● If it calls pthread_exit() function from within itself.

#include <pthread.h>

void pthread_exit(void *rval_ptr);
● The return value is accessed by another thread which

should be waiting for this thread to terminate.

How one thread waits for another thread

#include <pthread.h>

int pthread_join(pthread_t thread, void **rval_ptr);

● The thread that issues pthread_join() is suspended until the
other thread finishes execution.

● The waiting thread can choose to wait for a specific thread
whose thread ID is given.

● The waiting thread can receive the return value of the exiting
thread. If that information is not wanted, the second
parameter is set to NULL.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#define NUM_THREADS 6

/* create thread argument struct for thr_func() */
typedef struct _thread_data_t {
 int tid;
 double stuff;
} thread_data_t;

/* thread function */
void *thr_func(void *arg) {
 thread_data_t *data = (thread_data_t *)arg;

 printf("hello from thr_func, thread id: %d\n", data->tid);

 pthread_exit(NULL);
}

int main(int argc, char **argv) {
 pthread_t thr[NUM_THREADS];
 int i, rc;
 /* create a thread_data_t argument array */
 thread_data_t thr_data[NUM_THREADS];

 /* create threads */
 for (i = 0; i < NUM_THREADS; ++i) {
 thr_data[i].tid = i;
 if ((rc = pthread_create(&thr[i], NULL, thr_func, &thr_data[i]))) {
 fprintf(stderr, "error: pthread_create, rc: %d\n", rc);
 return EXIT_FAILURE;
 }
 }
 /* block until all threads complete */
 for (i = 0; i < NUM_THREADS; ++i) {
 pthread_join(thr[i], NULL);
 }

 return EXIT_SUCCESS;
}

Similar code using Qthreads in C++
#include <iostream>
#include <Qthread>

using namespace std;

class MyThread: public Qthread
{
 private:

int tid;
 public:

MyThread (int i) : ID (i)
{}
void run()
{ cout << "Thread " << ID << " is running\n": }

};

int main(int argc, char *argv[]) {
 int N = atoi (argv[1]);
 myThread *x[n];

 /* create threads */
 for (int i = 0; i < N; ++i) {
 x[i] = new MyThread(i);
 x[i]->start();
 }

 /* block until all threads complete */
 for (int i = 0; i < N; ++i) {
 x[i]->wait();
 }

 return EXIT_SUCCESS;
}

Some other useful pthread functions

How a thread finds its own ID:

pthread_t pthread_self(void);

The pthread_self() function returns the ID of the calling thread. This is
the same value that is returned in the first parameter in the
pthread_create() call that created this thread.

Tell another thread to terminate:

int pthread_cancel(pthread_t tidx);

One thread tells the thread whose ID is tidx to terminate. Important in
tree-based algorithms when a solution has been found and all other
threads can stop executing.

Threads and concurrency
On a multicore computer, multiple threads can be
used to perform a calculation in parallel:
● Different threads can run independent tasks in parallel -

functional parallelism.
● Different threads can perform the same task on different

data – data parallelism.

Issues to be considered:
● Is there shared data? If so, how is it protected?
● Are the threads accessing a shared resource and how

is the access coordinated?

How to create a non-joinable thread

A default thread's resources are not released until another
thread calls pthread_join().

In some cases, a thread needs to be able to run
independently of all other threads. This can be accomplished
by “detaching” the thread:

int pthread_detach(pthread_t thread);

When a detached thread terminates, its resources are
automatically released back to the system without the need
for another thread to join with the terminated thread.

Searching for a specific pattern in data – the serial
version

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

//Global variables
const int N=1000000;
int count;

//function prototypes
int count3s(int * , int);

int main()
{
 int i, result;
 int array[N];

// srand(time(0));
 for (i = 0; i < N; i++)
 array[i] = rand()%100 + 1;
 result = count3s(array, N);
 printf("There were %d 3's\n",result);
 exit(0);
}

// The serial function to count the number of 3s

int count3s(int * arr, int size)
{
 int i;
 count = 0;
 for (i = 0; i < size; i++)
 if (arr[i] == 3)
 count++;

 return count;
}

How to convert a serial code to use threads

● Is there functional or data parallelism? In either case, a function for
the thread to execute is needed.

● Is there data that needs to be shared between threads?

● Are the threads sharing any resources?

● Should the threads return a value or values?

● How should the threads terminate?

Choose data parallelism

void *count3s_thread(void *id)
{
// Compute the portion of the array that this thread should search
 int myid = *(int *)id, cnt3 = 0, i;
 int length_per_thread = N/tNUM; //accessing global variables
 int start = myid * length_per_thread;

 for (i = start; i < start + length_per_thread; i++)
 if(array[i] == 3)
 cnt3++;

 count[myid] = cnt3; //accessing a global variable

 pthread_exit(NULL);
}

Function that creates the threads
// This function creates tNUM threads
int count3s(void)
{
 int i;
 int thr_data[tNUM];
 int countt = 0;
 pthread_t thr[tNUM];
 for (i = 0; i < tNUM; i++) {

thr_data[i] = i;
pthread_create(&thr[i], NULL, count3s_thread, (void *)&thr_data[i]);

 }

 /* block until all threads complete */
 for (i = 0; i < tNUM; ++i) {
 pthread_join(thr[i], NULL);
 countt += count[i];
 }

 return countt;
}

The shared global data
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

//Global variables
const int N=1000000;
const int tNUM = 4;
int array[1000000];
int count[4];
//function prototypes
int count3s(void);
void *count3s_thread(void *);

int main(){
 int i, result;
// srand(time(0));

 for (i = 0; i < N; i++)
 array[i] = rand()%100 + 1;

 result = count3s();
 printf("There were %d 3's\n",result);
 exit(0);
}

Threads and synchronization

The execution of multiple threads in a process often
needs to be coordinated:
● Prevent inadvertent access to shared data.
● Prevent a possible race condition, e.g. results need to

be written to a shared file in a specific order.
● A task can not be performed until another task has been

completed by a different thread.
● A barrier needs to created to wait for all threads to

complete a task before proceeding.
● Synchronization functions allow the programmer to

control the scheduling and execution of threads

Mutexes

A mutex is a mutual exclusion lock:

● Block access to variables by other threads.
● Enforces exclusive access by a thread to a
shared resource.

● Can protect a “critical” section of memory.

Mutexes can be applied to threads in a single
process and do not work between processes

Basic mutex functions

Declaring a mutex:
pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;

Using a mutex:
 int pthread_mutex_lock(pthread_mutex_t *mutex);
 int pthread_mutex_trylock(pthread_mutex_t *mutex);
 int pthread_mutex_unlock(pthread_mutex_t *mutex);

Destroying a mutex:
int pthread_mutex_destroy(pthread_mutex_t *mutex);

Mutex usage – access to a shared variable

Code with no mutex

int counter=0;

/* Function C */

void functionC()

{

 counter++

}

Code with a mutex

/* mutex and counter are global variables */

pthread_mutex_t mutex1 =
PTHREAD_MUTEX_INITIALIZER;

int counter=0;

/* Function C */

void functionC()

{

 pthread_mutex_lock(&mutex1);

 counter++

 pthread_mutex_unlock(&mutex1);

}

Alternative way to initialize a mutex

A function can be used to initial a mutex and change its
properties:

int pthread_mutex_init(pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);

If *attr is set to NULL, a default mutex is created.

Advantages and disadvantages of mutexes

Advantages:

● Most efficient way to program mutual exclusion
● Easy to program

Disadvantages:

● Using multiple mutexes can lead to deadlock.
● Only thread that locks the mutex can unlock it.
● Only one thread can execute at a time.

Condition Variables

The condition variable mechanism allows threads to suspend
execution and relinquish the processor until some condition is true.

More than one thread can be allowed to execute a critical section
of code.

A condition variable must always be associated with a mutex to
avoid a race condition created by one thread preparing to wait and
another thread which is preparing to change the truth value of the
condition.

There is no explicit link between the mutex and the condition
variable.

Basic condition variable functions

Declaring a condition variable:

 pthread_cond_init(pthread_cond_t *cond,
 const pthread_condattr_t *attr);
 pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Destroying a condition variable:

 pthread_cond_destroy(pthread_cond_t *cond);

Using a condition variable

Waiting on condition:

pthread_cond_wait(pthread_cond_t *cond,pthread_mutex_t *mutex); -
unlocks the mutex and waits for the condition variable cond to be
signaled.
pthread_cond_timedwait(pthread_cond_t *cond,
 pthread_mutex_t *mutex,const struct timespec *abstime); -
place limit on how long it will block.

Waking thread based on condition:

pthread_cond_signal(pthread_cond_t *cond); - restarts one of the
threads that are waiting on the condition variable cond.

pthread_cond_broadcast(pthread_cond_t *cond); - wake up all threads
blocked by the specified condition variable.

Interaction of condition variables in threads

Thread X

1) Acquires mutex A

2) Checks condition (T or F)

3) False – mutex A released
atomically & thread X suspended

4) …

5) Thread reaquires mutex A (repeat
1) if false)

6) True – proceed with execution of
critical section

7) Thread finishes critical section and
releases mutex A

8) Thread continues its instructions

Thread Y

1) Acquires mutex A

2) It modifies the state of the condition

3) Signal message to unblock X (and
any other threads)

4) Thread releases mutex A

5) Thread continues its instructions

Posix semaphores
All POSIX semaphore functions and types are defined in semaphore.h. To
define a semaphore object, use

 #include <semaphore.h>
 sem_t sem_name;

To initialize a semaphore, use sem_init():

 int sem_init(sem_t *sem, int pshared, unsigned int value);

● sem points to a semaphore object to initialize
● pshared is a flag indicating whether or not the semaphore should be shared

with a process related by a common ancestor and using shared memory.
● value is the initial value assigned to the semaphore
●

Example of use:

 sem_init(&sem_name, 0, 10);

The value of pshared is 0, so the semaphore is known only in this process.

Using semaphores

A thread can have exclusive access to a semaphore (binary semaphore) or
several threads can be accessing the semaphore (counting semaphore). The
programmer decides the usage by the appropriate use of sem_wait() and
sem_post().

To access or obtain a semaphore,

 int sem_wait(sem_t *sem);

Example of use:

 sem_wait(&sem_name);

● This function decrements the value of the semaphore.
● If the value of the semaphore is negative, the calling thread blocks until

another thread increments the value.

To increment the value of a semaphore, use sem_post():

 int sem_post(sem_t *sem);

Example of use:

 sem_post(&sem_name);

The function increments the value of the semaphore and wakes up any blocked
thread that is waiting on the semaphore.

Any thread can issue a call to sem_post() and is issued when the thread is done
with a critical section of code or no longer needs exclusive access to a shared
variable or resource.

To find out the value of a semaphore, use

 int sem_getvalue(sem_t *sem, int *valp);

The current value of sem is placed in the location pointed to by valp.

Example of use:

 int value;
 sem_getvalue(&sem_name, &value);
 printf("The value of the semaphore is %d\n", value);

To destroy a semaphore, use

 int sem_destroy(sem_t *sem);

No threads should be waiting on the semaphore or it will not be destroyed.

Example of use:

 sem_destroy(&sem_name);

Thread safe functions

A thread function must call other functions which are "thread safe".

● This means that there are no static or global variables which other threads
may accidently change.

● If static or global variables are used then mutexes or other synchronization
must be used to protect the variables.

● In C, local variables are dynamically allocated on the stack. Any function that
only uses local variables and does not use static data or other shared
resources is thread-safe.

● Many library functions are thread-safe. POSIX.1-2001 and POSIX.1-2008
require that all functions specified in the standard shall be thread-safe, except
for a specified few. See the man pages, man pthreads.

Scheduling of threads
The scheduling of threads can be specified:

 during thread creation – set the attribute parameter:

● detached state – Default, PTHREAD_CREATE_JOINABLE. Other option:
PTHREAD_CREATE_DETACHED

● scheduling policy - PTHREAD_INHERIT_SCHED,
PTHREAD_EXPLICIT_SCHED, SCHED_OTHER

● scheduling parameter
● inheritsched attribute – Default, PTHREAD_EXPLICIT_SCHED or inherit

from parent thread, PTHREAD_INHERIT_SCHED
● Scope - Kernel threads: PTHREAD_SCOPE_SYSTEM. User threads,

PTHREAD_SCOPE_PROCESS. Pick one or the other not both.
● guard size
● stack address - _POSIX_THREAD_ATTR_STACKADDR)
● stack size - default minimum PTHREAD_STACK_SIZE set in pthread.h.

Scheduling cont.

Dynamically changing the attributes of a thread already created:

 int pthread_getschedparam(pthread_t thread, int *policy,
 struct sched_param *param);

 int pthread_setschedparam(pthread_t thread, int policy,
 const struct sched_param *param);

Defining the effect of a mutex on the thread's scheduling when creating a
mutex.

The pthreads library provides default values that are sufficient for most
cases.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

