On the Size and the Approximability of Minimum Temporally Connected Subgraphs

Dimitris Fotakis

Yahoo! Research, New York National Technical University of Athens

Joint work with Kyriakos Axiotis, CSAIL, MIT

NYCAC, November 2017

Network Properties are Time-Dependent

Graphs are used for modeling **networks** (e.g., transportation, communication, social) that are **dynamic** in nature.

Network Properties are Time-Dependent

Graphs are used for modeling **networks** (e.g., transportation, communication, social) that are **dynamic** in nature.

• Transportation and communication networks: congestion, maintenance, temporary failures.

Network Properties are Time-Dependent

Graphs are used for modeling **networks** (e.g., transportation, communication, social) that are **dynamic** in nature.

- Transportation and communication networks: congestion, maintenance, temporary failures.
- Social networks: relationships evolve with time.
- Networks modelling information spreading, epidemics, dynamical systems, ...

- Generalized model that captures network changes over time.
- **Temporal Graph**: sequence $\mathcal{G} = (G_t(V, E_t))_{t \in [L]}$ of (undirected) graphs on vertex set *V*, edge set E_t varies with time *t*.
 - Edge *e* has set of (time)labels l_1, \ldots, l_k denoting when *e* is **available**.

- Generalized model that captures network changes over time.
- **Temporal Graph**: sequence $\mathcal{G} = (G_t(V, E_t))_{t \in [L]}$ of (undirected) graphs on vertex set *V*, edge set E_t varies with time *t*.
 - Edge *e* has set of (time)labels l_1, \ldots, l_k denoting when *e* is **available**.
 - Maximum label *L* is the **lifetime** of *G*.
 - Order n = |V| and size $M = \sum_{t \in [L]} |E_t|$.

- Generalized model that captures network changes over time.
- **Temporal Graph**: sequence $\mathcal{G} = (G_t(V, E_t))_{t \in [L]}$ of (undirected) graphs on vertex set *V*, edge set E_t varies with time *t*.
 - Edge *e* has set of (time)labels l_1, \ldots, l_k denoting when *e* is **available**.
 - Maximum label *L* is the **lifetime** of *G*.
 - Order n = |V| and size $M = \sum_{t \in [L]} |E_t|$.
 - **Underlying** graph is the union $G(V, \cup_{t \in L} E_t)$.

- Generalized model that captures network changes over time.
- **Temporal Graph**: sequence $\mathcal{G} = (G_t(V, E_t))_{t \in [L]}$ of (undirected) graphs on vertex set *V*, edge set E_t varies with time *t*.
 - Edge *e* has set of (time)labels l_1, \ldots, l_k denoting when *e* is **available**.
 - Maximum label *L* is the **lifetime** of *G*.
 - Order n = |V| and size $M = \sum_{t \in [L]} |E_t|$.
 - **Underlying** graph is the union $G(V, \cup_{t \in L} E_t)$.
 - *G* can be edge (or vertex) weighted.
 - Simple if every edge available at most once.

Temporal Paths

Temporal $u_1 - u_k$ **path** : edge labels are **nondecreasing**.

• Temporal path $p = (u_1, (e_1, t_1), u_2, (e_2, t_2), \dots, (e_{k-1}, t_{k-1}), u_k)$, where $t_i \le t_{i+1}$ and $e_i = \{u_i, u_{i+1}\} \in E_{t_i}$.

Temporal Paths

Temporal $u_1 - u_k$ **path** : edge labels are **nondecreasing**.

- Temporal path $p = (u_1, (e_1, t_1), u_2, (e_2, t_2), \dots, (e_{k-1}, t_{k-1}), u_k)$, where $t_i \le t_{i+1}$ and $e_i = \{u_i, u_{i+1}\} \in E_{t_i}$.
- Starting at *u*₁, we reach *u*_k by crossing edges only when **available**.
- We can wait at any vertex until an adjacent edge is available.
- Crossing an edge is **instant**.

Temporal Connectivity

- G is *s*-temporally connected, $s \in V$, if exists temporal s v for any vertex v.
- G is **temporally connected** if both u v and v u temporal paths exist for every vertex pair u, v.

Some Previous Work

- Model, temporal reachability, temporal version of Menger's theorem for edge (*s*, *t*)-connectivity [Berman 96]
- Menger's theorem for vertex (*s*, *t*)-connectivity may not hold in temporal graphs [Berman 96], [Kempe Kleinberg Kumar 00]
 - max # vertex disjoint *s t* paths = min # vertices whose removal separates *s* and *t*.

Some Previous Work

- Model, temporal reachability, temporal version of Menger's theorem for edge (*s*, *t*)-connectivity [Berman 96]
- Menger's theorem for vertex (*s*, *t*)-connectivity may not hold in temporal graphs [Berman 96], [Kempe Kleinberg Kumar 00]
 - max # vertex disjoint *s t* paths = min # vertices whose removal separates *s* and *t*.
 - Temporal version holds iff for any labeling of graph *G*, temporal graph *G* is *H*-minor free.

Some Previous Work

- Model, temporal reachability, temporal version of Menger's theorem for edge (*s*, *t*)-connectivity [Berman 96]
- Menger's theorem for vertex (*s*, *t*)-connectivity may not hold in temporal graphs [Berman 96], [Kempe Kleinberg Kumar 00]
 - max # vertex disjoint *s t* paths = min # vertices whose removal separates *s* and *t*.
 - Temporal version holds iff for any labeling of graph *G*, temporal graph *G* is *H*-minor free.
- Menger's theorem holds if vertices are also regarded as temporal [Mertzios Michail Chatzigiannakis Spirakis 13]

- **Connectivity certificate** : connected spanning subgraph with **minimum** # edges.
- (Standard) graphs: any **spanning tree**, n 1 edges.

- **Connectivity certificate** : connected spanning subgraph with **minimum** # edges.
- (Standard) graphs: any **spanning tree**, n 1 edges.
- **Temporal** graphs: *s*-temporal connectivity certificate is any *s*-rooted temporal tree, n 1 edges.

- Connectivity certificate : connected spanning subgraph with minimum # edges.
- (Standard) graphs: any spanning tree , n 1 edges.
- **Temporal** graphs: *s*-temporal connectivity certificate is any *s*-rooted temporal tree, n 1 edges.
- Temporal graphs: temporal connectivity certificates more complicated and of different size.

Upper and lower bounds on size of **temporal** connectivity certificates in worst case (for simple graphs)? [Kempe Kleinberg Kumar 00]

Upper and lower bounds on size of **temporal** connectivity certificates in worst case (for simple graphs)? [Kempe Kleinberg Kumar 00]

• (Trivial) upper bound: $O(n^2)$ (take *n* different v_i -rooted trees).

Upper and lower bounds on size of **temporal** connectivity certificates in worst case (for simple graphs)? [Kempe Kleinberg Kumar 00]

- (Trivial) upper bound: $O(n^2)$ (take *n* different v_i -rooted trees).
- Lower bound: temporal hypercube requires $\Omega(n \log n)$ edges.

Upper and lower bounds on size of **temporal** connectivity certificates in worst case (for simple graphs)? [Kempe Kleinberg Kumar 00]

- (Trivial) upper bound: $O(n^2)$ (take *n* different v_i -rooted trees).
- Lower bound: temporal hypercube requires $\Omega(n \log n)$ edges.
- We **improve** lower bound to $\Omega(n^2)$!

Dense temporally connected graph where deletion of any edge breaks temporal connectivity.

• *n*/2 vertex pairs connected by *n*/2 **edge-disjoint** paths of **length** *n* each with a **different** label.

Dense temporally connected graph where deletion of any edge breaks temporal connectivity.

- *n*/2 vertex pairs connected by *n*/2 **edge-disjoint** paths of **length** *n* each with a **different** label.
- Paths use the **same set** of *n* **intermediate** vertices.

- Dense part: *n*/2 edge-disjoint paths of length *n* on same set of intermediate vertices.
- **Partition** a complete graph *K_n* into *n*/2 **Hamiltonian paths**.

- Dense part: *n*/2 edge-disjoint paths of length *n* + 1 on same set of intermediate vertices.
- **Partition** a complete graph *K_n* into *n*/2 **Hamilton paths**.

- Attach 2 new vertices to the endpoints of each Hamilton path.
- All *n* + 1 edges of the *i*-th Hamilton path have the same label *i*.

- Dense part: *n*/2 edge-disjoint paths of length *n* + 1 on same set of intermediate vertices.
- Temporal paths $h_{2i} h_{2i-1}$ and $h_{2i-1} h_{2i}$ use edges with label *i*.

- Dense part: *n*/2 edge-disjoint paths of length *n* + 1 on same set of intermediate vertices.
- Temporal paths $h_{2i} h_{2i-1}$ and $h_{2i-1} h_{2i}$ use edges with label *i*.
- Vertices h_1, \ldots, h_{2i-2} unreachable from vertices h_{2i-1} and h_{2i} .

• Interconnection part: connect *h*-vertices through *n* additional *m*-vertices: an *m*-vertex pair for each Hamilton path.

- Interconnection part: connect *h*-vertices through *n* additional *m*-vertices: an *m*-vertex pair for each Hamilton path.
- Do not introduce alternative temporal h_{2i} − h_{2i−1} paths (careful use of timelabels).
- *m*-vertices serve as **"entry**" and **"exit**" points of corresponding Hamilton path.

- Temporal path $h_{2i} h_{2i-1}$ uses edges with label *i* only.
- **Removing** any edge with **label** *i* from *i*-th Hamilton path **disconnects** *h*_{2*i*} from *h*_{2*i*-1}.
- All $\Theta(n^2)$ edges of "dense part" are needed for connectivity.

- Temporal path $h_{2i} h_{2i-1}$ uses edges with label *i* only.
- **Removing** any edge with **label** *i* from *i*-th Hamilton path **disconnects** *h*_{2*i*} from *h*_{2*i*-1}.
- All $\Theta(n^2)$ edges of "dense part" are needed for connectivity.
- Linear connectivity certificate by changing a single label!

Minimum Temporal Connectivity Certificate

Minimum Temporal Connectivity (MTC)

Given **connected edge-weighted** temporal graph $\mathcal{G}(V, E, w)$, find spanning subgraph $\mathcal{G}'(V, E', w)$, where $E'_t \subseteq E_t$ for all $t \in [L]$, of **minimum total weight** $\sum_{t=1}^{L} w(E'_t)$ and

- Minimum *s*-Temporal Connectivity (*s*-MTC): *G*' is *s*-temporally connected.
- Minimum Temporal Connectivity (MTC): G' is (all-pairs) temporally connected.

Given **connected edge-weighted** temporal graph $\mathcal{G}(V, E, w)$, find spanning subgraph $\mathcal{G}'(V, E', w)$, where $E'_t \subseteq E_t$ for all $t \in [L]$, of **minimum total weight** $\sum_{t=1}^{L} w(E'_t)$ and

- Minimum *s*-Temporal Connectivity (*s*-MTC) : *G*′ is *s*-temporally connected.
- Minimum Temporal Connectivity (MTC): G' is (all-pairs) temporally connected.

Both problems are **hard** to approximate:

- Temporal paths are inherently directed.
- Labels restrict relative order of edges in a path.
- Temporal connectivity similar to Directed Steiner Tree / Forest !

- Optimal solution is a tree: n 1 edges suffice.
- Poly-time solvable in **unweighted** case: temporal BFS.

- Optimal solution is a tree: n 1 edges suffice.
- Poly-time solvable in unweighted case: temporal BFS.
- Weighted case similar to Directed Steiner Tree (DST).

- Optimal solution is a tree: n 1 edges suffice.
- Poly-time solvable in unweighted case: temporal BFS.
- Weighted case similar to Directed Steiner Tree (DST).
- Reduction from DST: inapproximable within $O(\log^{2-\varepsilon} n)$, unless NP \subseteq ZTIME $(n^{\text{poly} \log n})$ [Halperin Krauthgamer 03]
- Reduction to DST: approximation ratio O(n^ε), for any ε > 0, and O(log³ n) in quasi-P [Charikar et al.99]

- Optimal solution is a tree: n 1 edges suffice.
- Poly-time solvable in unweighted case: temporal BFS.
- Weighted case similar to Directed Steiner Tree (DST).
- Reduction from DST: inapproximable within $O(\log^{2-\varepsilon} n)$, unless NP \subseteq ZTIME $(n^{\text{poly} \log n})$ [Halperin Krauthgamer 03]
- Reduction to DST: approximation ratio O(n^ε), for any ε > 0, and O(log³ n) in quasi-P [Charikar et al.99]
- Poly-time solvable if underlying graph has bounded treewidth .

Reduction from Directed Steiner Tree

Directed graph $H(V_H, E_H, w)$, $|V_H| = n$, source *s*, set of terminals *T*.

- Every vertex $u \in V_H$ becomes vertex u of temporal graph \mathcal{G} .
 - Temporal edges $(\{u, z_u^l\}, l)$ of weight 0, for l = 1, ..., n 1.

Reduction from Directed Steiner Tree

Directed graph $H(V_H, E_H, w)$, $|V_H| = n$, source *s*, set of terminals *T*.

- Every vertex $u \in V_H$ becomes vertex u of temporal graph \mathcal{G} .
 - Temporal edges $(\{u, z_u^l\}, l)$ of weight 0, for l = 1, ..., n 1.
- Each (directed) edge $e = \{u, v\} \in E_H$ of weight w(e):
 - Temporal edges $(\{z_u^l, v\}, l)$ with weight w(e), for l = 2, ..., n

Reduction from Directed Steiner Tree

Directed graph $H(V_H, E_H, w)$, $|V_H| = n$, source *s*, set of terminals *T*.

- Every vertex $u \in V_H$ becomes vertex u of temporal graph \mathcal{G} .
 - Temporal edges $(\{u, z_u^l\}, l)$ of weight 0, for l = 1, ..., n 1.
- Each (directed) edge $e = \{u, v\} \in E_H$ of weight w(e):
 - Temporal edges $(\{z_u^l, v\}, l)$ with weight w(e), for l = 2, ..., n
- *s* has "direct" edge with label n + 1 and weight 0 to every *z*-vertex and to every non-terminal vertex.
 - \mathcal{G} has $O(n^2)$ vertices and $O(n|E_H|)$ temporal edges.

- Reduction from (1,2)-Steiner tree: APX-hard for **unweighted** temporal graphs.
- Poly-time solvable if underlying graph is tree.
- Approximation ratio 2 if underlying graph is cycle.

- Reduction from (1,2)-Steiner tree: APX-hard for **unweighted** temporal graphs.
- Poly-time solvable if underlying graph is tree.
- Approximation ratio 2 if underlying graph is cycle.
- Reduction from Label Cover: inapproximable within $O(2^{\log^{1-\epsilon} n})$, unless NP \subseteq DTIME $(n^{\text{poly} \log n})$ [Dodis Khanna 99]

- Reduction from (1,2)-Steiner tree: APX-hard for **unweighted** temporal graphs.
- Poly-time solvable if underlying graph is tree.
- Approximation ratio 2 if underlying graph is cycle.
- Reduction from Label Cover: inapproximable within $O(2^{\log^{1-\epsilon} n})$, unless NP \subseteq DTIME $(n^{\text{poly} \log n})$ [Dodis Khanna 99]
- Union of *n* solutions to v_i -MTC: $O(n^{1+\varepsilon})$ -approximation.

- Reduction from (1,2)-Steiner tree: APX-hard for **unweighted** temporal graphs.
- Poly-time solvable if underlying graph is tree.
- Approximation ratio 2 if underlying graph is cycle.
- Reduction from Label Cover: inapproximable within $O(2^{\log^{1-\epsilon} n})$, unless NP \subseteq DTIME $(n^{\text{poly} \log n})$ [Dodis Khanna 99]
- Union of *n* solutions to v_i -MTC: $O(n^{1+\epsilon})$ -approximation.
- Reduction to Directed Steiner Forest : $O((\Delta M)^{2/3+\varepsilon})$ -approximation [Feldman Kortsarz Nutov 12]

• Complexity of distinguishing between graphs with temporal connectivity certificates of linear size and of quadratic size?

- Complexity of distinguishing between graphs with temporal connectivity certificates of linear size and of quadratic size?
- Special cases of Minimum Temporal Connectivity where *O*(1)**-approximation** possible?

- Complexity of distinguishing between graphs with temporal connectivity certificates of linear size and of quadratic size?
- Special cases of Minimum Temporal Connectivity where *O*(1)**-approximation** possible?
- Complexity and approximability if **timelabels** are determined by **simple rules**?

Thank You!