On the Size and the Approximability of Minimum Temporally Connected Subgraphs

Dimitris Fotakis

Yahoo! Research, New York
National Technical University of Athens

Joint work with Kyriakos Axiotis, CSAIL, MIT

NYCAC, November 2017

Motivation

Network Properties are Time-Dependent
Graphs are used for modeling networks (e.g., transportation, communication, social) that are dynamic in nature.

Motivation

Network Properties are Time-Dependent

Graphs are used for modeling networks (e.g., transportation, communication, social) that are dynamic in nature.

- Transportation and communication networks: congestion, maintenance, temporary failures.

Motivation

Network Properties are Time-Dependent

Graphs are used for modeling networks (e.g., transportation, communication, social) that are dynamic in nature.

- Transportation and communication networks: congestion, maintenance, temporary failures.
- Social networks: relationships evolve with time.
- Networks modelling information spreading, epidemics, dynamical systems, ...

Temporal Graphs

- Generalized model that captures network changes over time.
- Temporal Graph : sequence $\mathcal{G}=\left(G_{t}\left(V, E_{t}\right)\right)_{t \in[L]}$ of (undirected) graphs on vertex set V, edge set E_{t} varies with time t.
- Edge e has set of (time)labels l_{1}, \ldots, l_{k} denoting when e is available .

Temporal Graphs

- Generalized model that captures network changes over time.
- Temporal Graph : sequence $\mathcal{G}=\left(G_{t}\left(V, E_{t}\right)\right)_{t \in[L]}$ of (undirected) graphs on vertex set V, edge set E_{t} varies with time t.
- Edge e has set of (time)labels l_{1}, \ldots, l_{k} denoting when e is available .
- Maximum label L is the lifetime of \mathcal{G}.
- Order $n=|V|$ and size $M=\sum_{t \in[L]}\left|E_{t}\right|$.

Temporal Graphs

- Generalized model that captures network changes over time.
- Temporal Graph : sequence $\mathcal{G}=\left(G_{t}\left(V, E_{t}\right)\right)_{t \in[L]}$ of (undirected) graphs on vertex set V, edge set E_{t} varies with time t.
- Edge e has set of (time)labels l_{1}, \ldots, l_{k} denoting when e is available .
- Maximum label L is the lifetime of \mathcal{G}.
- Order $n=|V|$ and size $M=\sum_{t \in[L]}\left|E_{t}\right|$.
- Underlying graph is the union $G\left(V, \cup_{t \in L} E_{t}\right)$.

Temporal Graphs

- Generalized model that captures network changes over time.
- Temporal Graph : sequence $\mathcal{G}=\left(G_{t}\left(V, E_{t}\right)\right)_{t \in[L]}$ of (undirected) graphs on vertex set V, edge set E_{t} varies with time t.
- Edge e has set of (time)labels l_{1}, \ldots, l_{k} denoting when e is available .
- Maximum label L is the lifetime of \mathcal{G}.
- Order $n=|V|$ and size $M=\sum_{t \in[L]}\left|E_{t}\right|$.
- Underlying graph is the union $G\left(V, \cup_{t \in L} E_{t}\right)$.
- \mathcal{G} can be edge (or vertex) weighted.
- Simple if every edge available at most once.

Temporal Paths

Temporal $u_{1}-u_{k}$ path : edge labels are nondecreasing.

- Temporal path $p=\left(u_{1},\left(e_{1}, t_{1}\right), u_{2},\left(e_{2}, t_{2}\right), \ldots,\left(e_{k-1}, t_{k-1}\right), u_{k}\right)$, where $t_{i} \leq t_{i+1}$ and $e_{i}=\left\{u_{i}, u_{i+1}\right\} \in E_{t_{i}}$.

$u_{1} \rightarrow u_{4}$
$u_{2} \rightarrow u_{4}$
$u_{4} \rightarrow u_{2}$

Temporal Paths

Temporal $u_{1}-u_{k}$ path : edge labels are nondecreasing.

- Temporal path $p=\left(u_{1},\left(e_{1}, t_{1}\right), u_{2},\left(e_{2}, t_{2}\right), \ldots,\left(e_{k-1}, t_{k-1}\right), u_{k}\right)$, where $t_{i} \leq t_{i+1}$ and $e_{i}=\left\{u_{i}, u_{i+1}\right\} \in E_{t_{i}}$.
- Starting at u_{1}, we reach u_{k} by crossing edges only when available.
- We can wait at any vertex until an adjacent edge is available.
- Crossing an edge is instant.

$u_{1} \rightarrow u_{4}$
$u_{2} \rightarrow u_{4}$
$u_{4} \rightarrow u_{2}$

Temporal Connectivity

- \mathcal{G} is s-temporally connected, $s \in V$, if exists temporal $s-v$ for any vertex v.
- \mathcal{G} is temporally connected if both $u-v$ and $v-u$ temporal paths exist for every vertex pair u, v.

$$
u_{1} \rightarrow u_{4}
$$

$$
u_{2} \rightarrow u_{4}
$$

$$
u_{4} \rightarrow u_{2}
$$

Some Previous Work

- Model, temporal reachability, temporal version of Menger's theorem for edge (s, t)-connectivity [Berman 96]
- Menger's theorem for vertex (s, t)-connectivity may not hold in temporal graphs [Berman 96], [Kempe Kleinberg Kumar 00]
- max \# vertex disjoint $s-t$ paths $=\min \#$ vertices whose removal separates s and t.

Some Previous Work

- Model, temporal reachability, temporal version of Menger's theorem for edge (s, t)-connectivity [Berman 96]
- Menger's theorem for vertex (s, t)-connectivity may not hold in temporal graphs [Berman 96], [Kempe Kleinberg Kumar 00]
- max \# vertex disjoint $s-t$ paths $=\min \#$ vertices whose removal separates s and t.
- Temporal version holds iff for any labeling of graph G, temporal graph \mathcal{G} is H -minor free.

Some Previous Work

- Model, temporal reachability, temporal version of Menger's theorem for edge (s, t)-connectivity [Berman 96]
- Menger's theorem for vertex (s, t)-connectivity may not hold in temporal graphs [Berman 96], [Kempe Kleinberg Kumar 00]
- max \# vertex disjoint $s-t$ paths $=\min \#$ vertices whose removal separates s and t.
- Temporal version holds iff for any labeling of graph G, temporal graph \mathcal{G} is H -minor free.
- Menger's theorem holds if vertices are also regarded as temporal [Mertzios Michail Chatzigiannakis Spirakis 13]

Connectivity Certificates in Temporal Graphs

- Connectivity certificate : connected spanning subgraph with minimum \#edges.
- (Standard) graphs: any spanning tree , $n-1$ edges.

Connectivity Certificates in Temporal Graphs

- Connectivity certificate : connected spanning subgraph with minimum \#edges.
- (Standard) graphs: any spanning tree, $n-1$ edges.
- Temporal graphs: s-temporal connectivity certificate is any s-rooted temporal tree, $n-1$ edges.

Connectivity Certificates in Temporal Graphs

- Connectivity certificate : connected spanning subgraph with minimum \#edges.
- (Standard) graphs: any spanning tree, $n-1$ edges.
- Temporal graphs: s-temporal connectivity certificate is any s-rooted temporal tree, $n-1$ edges.
- Temporal graphs: temporal connectivity certificates more complicated and of different size.

Connectivity Certificates in Temporal Graphs

Upper and lower bounds on size of temporal connectivity certificates in worst case (for simple graphs)? [Kempe Kleinberg Kumar 00]

Connectivity Certificates in Temporal Graphs

Upper and lower bounds on size of temporal connectivity certificates in worst case (for simple graphs)? [Kempe Kleinberg Kumar 00]

- (Trivial) upper bound: $O\left(n^{2}\right)$ (take n different v_{i}-rooted trees).

Connectivity Certificates in Temporal Graphs

Upper and lower bounds on size of temporal connectivity certificates in worst case (for simple graphs)? [Kempe Kleinberg Kumar 00]

- (Trivial) upper bound: $O\left(n^{2}\right)$ (take n different v_{i}-rooted trees).
- Lower bound: temporal hypercube requires $\Omega(n \log n)$ edges.

Connectivity Certificates in Temporal Graphs

Upper and lower bounds on size of temporal connectivity certificates in worst case (for simple graphs)? [Kempe Kleinberg Kumar 00]

- (Trivial) upper bound: $O\left(n^{2}\right)$ (take n different v_{i}-rooted trees).
- Lower bound: temporal hypercube requires $\Omega(n \log n)$ edges.
- We improve lower bound to $\Omega\left(n^{2}\right)$!

Quadratic Temporal Connectivity Certificates

Dense temporally connected graph where deletion of any edge breaks temporal connectivity.

- $n / 2$ vertex pairs connected by $n / 2$ edge-disjoint paths of length n each with a different label.

Quadratic Temporal Connectivity Certificates

Dense temporally connected graph where deletion of any edge breaks temporal connectivity.

- $n / 2$ vertex pairs connected by $n / 2$ edge-disjoint paths of length n each with a different label.
- Paths use the same set of n intermediate vertices.

Quadratic Temporal Connectivity Certificates

- Dense part: $n / 2$ edge-disjoint paths of length n on same set of intermediate vertices.
- Partition a complete graph K_{n} into $n / 2$ Hamiltonian paths .

Quadratic Temporal Connectivity Certificates

- Dense part: $n / 2$ edge-disjoint paths of length $n+1$ on same set of intermediate vertices.
- Partition a complete graph K_{n} into $n / 2$ Hamilton paths .

Quadratic Temporal Connectivity Certificates

- Attach 2 new vertices to the endpoints of each Hamilton path.
- All $n+1$ edges of the i-th Hamilton path have the same label i.

Quadratic Temporal Connectivity Certificates

- Dense part: $n / 2$ edge-disjoint paths of length $n+1$ on same set of intermediate vertices.
- Temporal paths $h_{2 i}-h_{2 i-1}$ and $h_{2 i-1}-h_{2 i}$ use edges with label i.

Quadratic Temporal Connectivity Certificates

- Dense part: $n / 2$ edge-disjoint paths of length $n+1$ on same set of intermediate vertices.
- Temporal paths $h_{2 i}-h_{2 i-1}$ and $h_{2 i-1}-h_{2 i}$ use edges with label i.
- Vertices $h_{1}, \ldots, h_{2 i-2}$ unreachable from vertices $h_{2 i-1}$ and $h_{2 i}$.

Quadratic Temporal Connectivity Certificates

- Interconnection part: connect h-vertices through n additional m-vertices: an m-vertex pair for each Hamilton path.

Quadratic Temporal Connectivity Certificates

- Interconnection part: connect h-vertices through n additional m-vertices: an m-vertex pair for each Hamilton path.
- Do not introduce alternative temporal $h_{2 i}-h_{2 i-1}$ paths (careful use of timelabels).
- m-vertices serve as "entry" and "exit" points of corresponding Hamilton path.

Quadratic Temporal Connectivity Certificates

- Temporal path $h_{2 i}-h_{2 i-1}$ uses edges with label i only.
- Removing any edge with label i from i-th Hamilton path disconnects $h_{2 i}$ from $h_{2 i-1}$.
- All $\Theta\left(n^{2}\right)$ edges of "dense part" are needed for connectivity.

Quadratic Temporal Connectivity Certificates

- Temporal path $h_{2 i}-h_{2 i-1}$ uses edges with label i only.
- Removing any edge with label i from i-th Hamilton path disconnects $h_{2 i}$ from $h_{2 i-1}$.
- All $\Theta\left(n^{2}\right)$ edges of "dense part" are needed for connectivity.
- Linear connectivity certificate by changing a single label!

Minimum Temporal Connectivity Certificate

Minimum Temporal Connectivity (MTC)

Given connected edge-weighted temporal graph $\mathcal{G}(V, E, w)$, find spanning subgraph $\mathcal{G}^{\prime}\left(V, E^{\prime}, w\right)$, where $E_{t}^{\prime} \subseteq E_{t}$ for all $t \in[L]$, of minimum total weight $\sum_{t=1}^{L} w\left(E_{t}^{\prime}\right)$ and

- Minimum s-Temporal Connectivity (s-MTC) : \mathcal{G}^{\prime} is s-temporally connected.
- Minimum Temporal Connectivity (MTC): \mathcal{G}^{\prime} is (all-pairs) temporally connected.

Minimum Temporal Connectivity Certificate

Minimum Temporal Connectivity (MTC)

Given connected edge-weighted temporal graph $\mathcal{G}(V, E, w)$, find spanning subgraph $\mathcal{G}^{\prime}\left(V, E^{\prime}, w\right)$, where $E_{t}^{\prime} \subseteq E_{t}$ for all $t \in[L]$, of minimum total weight $\sum_{t=1}^{L} w\left(E_{t}^{\prime}\right)$ and

- Minimum s-Temporal Connectivity (s-MTC) : \mathcal{G}^{\prime} is s-temporally connected.
- Minimum Temporal Connectivity (MTC) : \mathcal{G}^{\prime} is (all-pairs) temporally connected.

Both problems are hard to approximate:

- Temporal paths are inherently directed.
- Labels restrict relative order of edges in a path.
- Temporal connectivity similar to Directed Steiner Tree / Forest !

Minimum s-Temporal Connectivity (s-MTC)

Approximating s-MTC

- Optimal solution is a tree: $n-1$ edges suffice.
- Poly-time solvable in unweighted case: temporal BFS.

Minimum s-Temporal Connectivity (s-MTC)

Approximating s-MTC

- Optimal solution is a tree: $n-1$ edges suffice.
- Poly-time solvable in unweighted case: temporal BFS.
- Weighted case similar to Directed Steiner Tree (DST).

Minimum s-Temporal Connectivity (s-MTC)

Approximating s-MTC

- Optimal solution is a tree: $n-1$ edges suffice.
- Poly-time solvable in unweighted case: temporal BFS.
- Weighted case similar to Directed Steiner Tree (DST).
- Reduction from DST: inapproximable within $O\left(\log ^{2-\varepsilon} n\right)$, unless $\mathrm{NP} \subseteq \operatorname{ZTIME}\left(n^{\text {poly } \log n}\right)$ [Halperin Krauthgamer 03]
- Reduction to DST: approximation ratio $O\left(n^{\varepsilon}\right)$, for any $\varepsilon>0$, and $O\left(\log ^{3} n\right)$ in quasi-P [Charikar et al. 99]

Minimum s-Temporal Connectivity (s-MTC)

Approximating s-MTC

- Optimal solution is a tree: $n-1$ edges suffice.
- Poly-time solvable in unweighted case: temporal BFS.
- Weighted case similar to Directed Steiner Tree (DST).
- Reduction from DST: inapproximable within $O\left(\log ^{2-\varepsilon} n\right)$, unless $\mathrm{NP} \subseteq \operatorname{ZTIME}\left(n^{\text {poly } \log n}\right)$ [Halperin Krauthgamer 03]
- Reduction to DST: approximation ratio $O\left(n^{\varepsilon}\right)$, for any $\varepsilon>0$, and $O\left(\log ^{3} n\right)$ in quasi-P [Charikar et al. 99]
- Poly-time solvable if underlying graph has bounded treewidth .

Reduction from Directed Steiner Tree

Directed graph $H\left(V_{H}, E_{H}, w\right),\left|V_{H}\right|=n$, source s, set of terminals T.

- Every vertex $u \in V_{H}$ becomes vertex u of temporal graph \mathcal{G}.
- Temporal edges $\left(\left\{u, z_{u}^{l}\right\}, l\right)$ of weight 0 , for $l=1, \ldots, n-1$.

Reduction from Directed Steiner Tree

Directed graph $H\left(V_{H}, E_{H}, w\right),\left|V_{H}\right|=n$, source s, set of terminals T.

- Every vertex $u \in V_{H}$ becomes vertex u of temporal graph \mathcal{G}.
- Temporal edges $\left(\left\{u, z_{u}^{l}\right\}, l\right)$ of weight 0 , for $l=1, \ldots, n-1$.
- Each (directed) edge $e=\{u, v\} \in E_{H}$ of weight $w(e)$:
- Temporal edges $\left(\left\{z_{u}^{l}, v\right\}, l\right)$ with weight $w(e)$, for $l=2, \ldots, n$

Reduction from Directed Steiner Tree

Directed graph $H\left(V_{H}, E_{H}, w\right),\left|V_{H}\right|=n$, source s, set of terminals T.

- Every vertex $u \in V_{H}$ becomes vertex u of temporal graph \mathcal{G}.
- Temporal edges $\left(\left\{u, z_{u}^{l}\right\}, l\right)$ of weight 0 , for $l=1, \ldots, n-1$.
- Each (directed) edge $e=\{u, v\} \in E_{H}$ of weight $w(e)$:
- Temporal edges $\left(\left\{z_{u}^{l}, v\right\}, l\right)$ with weight $w(e)$, for $l=2, \ldots, n$
- s has "direct" edge with label $n+1$ and weight 0 to every z-vertex and to every non-terminal vertex.
- \mathcal{G} has $O\left(n^{2}\right)$ vertices and $O\left(n\left|E_{H}\right|\right)$ temporal edges.

Minimum Temporal Connectivity (MTC)

Approximating Minimum Temporal Connectivity

- Reduction from (1,2)-Steiner tree: APX-hard for unweighted temporal graphs.
- Poly-time solvable if underlying graph is tree.
- Approximation ratio 2 if underlying graph is cycle.

Minimum Temporal Connectivity (MTC)

Approximating Minimum Temporal Connectivity

- Reduction from (1,2)-Steiner tree: APX-hard for unweighted temporal graphs.
- Poly-time solvable if underlying graph is tree.
- Approximation ratio 2 if underlying graph is cycle .
- Reduction from Label Cover: inapproximable within $O\left(2^{\log ^{1-\varepsilon} n}\right)$, unless NP \subseteq DTIME ($n^{\text {poly } \log n}$) [Dodis Khanna 99]

Minimum Temporal Connectivity (MTC)

Approximating Minimum Temporal Connectivity

- Reduction from (1,2)-Steiner tree: APX-hard for unweighted temporal graphs.
- Poly-time solvable if underlying graph is tree.
- Approximation ratio 2 if underlying graph is cycle.
- Reduction from Label Cover: inapproximable within $O\left(2^{\log ^{1-\varepsilon} n}\right)$, unless NP \subseteq DTIME ($n^{\text {poly } \log n}$) [Dodis Khanna 99]
- Union of n solutions to v_{i}-MTC: $O\left(n^{1+\varepsilon}\right)$-approximation.

Minimum Temporal Connectivity (MTC)

Approximating Minimum Temporal Connectivity

- Reduction from (1,2)-Steiner tree: APX-hard for unweighted temporal graphs.
- Poly-time solvable if underlying graph is tree.
- Approximation ratio 2 if underlying graph is cycle.
- Reduction from Label Cover: inapproximable within $O\left(2^{\log ^{1-\varepsilon} n}\right)$, unless NP \subseteq DTIME ($n^{\text {poly } \log n}$) [Dodis Khanna 99]
- Union of n solutions to v_{i}-MTC: $O\left(n^{1+\varepsilon}\right)$-approximation.
- Reduction to Directed Steiner Forest:
$O\left((\Delta M)^{2 / 3+\varepsilon}\right)$-approximation [Feldman Kortsarz Nutov 12]

Research Directions

- Complexity of distinguishing between graphs with temporal connectivity certificates of linear size and of quadratic size?

Research Directions

- Complexity of distinguishing between graphs with temporal connectivity certificates of linear size and of quadratic size?
- Special cases of Minimum Temporal Connectivity where $O(1)$-approximation possible?

Research Directions

- Complexity of distinguishing between graphs with temporal connectivity certificates of linear size and of quadratic size?
- Special cases of Minimum Temporal Connectivity where $O(1)$-approximation possible?
- Complexity and approximability if timelabels are determined by simple rules?

Thank You!

