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Motivation

Network Properties are Time-Dependent

Graphs are used for modeling networks (e.g., transportation,
communication, social) that are dynamic in nature.

Transportation and communication networks: congestion,
maintenance, temporary failures.
Social networks: relationships evolve with time.
Networks modelling information spreading, epidemics,
dynamical systems, ...
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Temporal Graphs

Generalized model that captures network changes over time.
Temporal Graph : sequence G = (Gt(V,Et))t∈[L] of (undirected)
graphs on vertex set V, edge set Et varies with time t.

Edge e has set of (time)labels l1, . . . , lk denoting when e is available .

Maximum label L is the lifetime of G.
Order n = |V| and size M =

∑
t∈[L] |Et| .

Underlying graph is the union G(V,∪t∈LEt) .
G can be edge (or vertex) weighted.
Simple if every edge available at most once.
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Temporal Paths

Temporal u1 − uk path : edge labels are nondecreasing .

Temporal path p = (u1, (e1, t1),u2, (e2, t2), . . . , (ek−1, tk−1),uk) ,
where ti ≤ ti+1 and ei = {ui,ui+1} ∈ Eti .

Starting at u1, we reach uk by crossing edges only when
available .
We can wait at any vertex until an adjacent edge is available.
Crossing an edge is instant .
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Temporal Connectivity

G is s-temporally connected , s ∈ V, if exists temporal s− v for
any vertex v.
G is temporally connected if both u− v and v− u temporal paths
exist for every vertex pair u, v.

1,2,3

1,21

2,3

1,2

1

2

3

1

1

3

1 1 1

Dimitris Fotakis Minimum Temporally Connected Subgraphs



Some Previous Work

Model, temporal reachability, temporal version of Menger’s
theorem for edge (s, t)-connectivity [Berman 96]

Menger’s theorem for vertex (s, t)-connectivity may not hold in
temporal graphs [Berman 96], [Kempe Kleinberg Kumar 00]

max # vertex disjoint s− t paths = min # vertices whose removal
separates s and t.

Temporal version holds iff for any labeling of graph G, temporal
graph G is H-minor free .

Menger’s theorem holds if vertices are also regarded as
temporal [Mertzios Michail Chatzigiannakis Spirakis 13]
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Connectivity Certificates in Temporal Graphs

Connectivity certificate : connected spanning subgraph with
minimum # edges.
(Standard) graphs: any spanning tree , n− 1 edges.

Temporal graphs: s-temporal connectivity certificate is any
s-rooted temporal tree , n− 1 edges.
Temporal graphs: temporal connectivity certificates more
complicated and of different size .
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Connectivity Certificates in Temporal Graphs

Upper and lower bounds on size of temporal connectivity certificates
in worst case (for simple graphs)? [Kempe Kleinberg Kumar 00]

(Trivial) upper bound: O(n2) (take n different vi-rooted trees).
Lower bound: temporal hypercube requires Ω(n log n) edges.
We improve lower bound to Ω(n2) !
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Quadratic Temporal Connectivity Certificates

Dense temporally connected graph where deletion of any edge
breaks temporal connectivity.

n/2 vertex pairs connected by n/2 edge-disjoint paths of length
n each with a different label.

Paths use the same set of n intermediate vertices.
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Quadratic Temporal Connectivity Certificates

Dense part: n/2 edge-disjoint paths of length n on same set of
intermediate vertices.
Partition a complete graph Kn into n/2 Hamiltonian paths .
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Quadratic Temporal Connectivity Certificates

Dense part: n/2 edge-disjoint paths of length n + 1 on same set
of intermediate vertices.
Partition a complete graph Kn into n/2 Hamilton paths .
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Quadratic Temporal Connectivity Certificates

Attach 2 new vertices to the endpoints of each Hamilton path.
All n + 1 edges of the i-th Hamilton path have the same label i .
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Quadratic Temporal Connectivity Certificates

Dense part: n/2 edge-disjoint paths of length n + 1 on same set
of intermediate vertices.
Temporal paths h2i − h2i−1 and h2i−1 − h2i use edges with label i .

Vertices h1, . . . , h2i−2 unreachable from vertices h2i−1 and h2i.
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Quadratic Temporal Connectivity Certificates

Interconnection part: connect h-vertices through n additional
m-vertices: an m-vertex pair for each Hamilton path.

Do not introduce alternative temporal h2i − h2i−1 paths (careful
use of timelabels).
m-vertices serve as “entry” and “exit” points of corresponding
Hamilton path.
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Quadratic Temporal Connectivity Certificates

Temporal path h2i − h2i−1 uses edges with label i only.
Removing any edge with label i from i-th Hamilton path
disconnects h2i from h2i−1 .
All Θ(n2) edges of “dense part” are needed for connectivity.

Linear connectivity certificate by changing a single label !
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Minimum Temporal Connectivity Certificate

Minimum Temporal Connectivity (MTC)

Given connected edge-weighted temporal graph G(V,E,w), find
spanning subgraph G′(V,E′,w), where E′t ⊆ Et for all t ∈ [L], of
minimum total weight

∑L
t=1 w(E′t) and

Minimum s-Temporal Connectivity (s-MTC) : G′ is s-temporally
connected.
Minimum Temporal Connectivity (MTC) : G′ is (all-pairs)
temporally connected.

Both problems are hard to approximate:

Temporal paths are inherently directed .
Labels restrict relative order of edges in a path.
Temporal connectivity similar to Directed Steiner Tree / Forest !
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Minimum s-Temporal Connectivity (s-MTC)

Approximating s-MTC

Optimal solution is a tree: n− 1 edges suffice.
Poly-time solvable in unweighted case: temporal BFS.

Weighted case similar to Directed Steiner Tree (DST).
Reduction from DST: inapproximable within O(log2−ε n) , unless
NP ⊆ ZTIME(npoly log n) [Halperin Krauthgamer 03]

Reduction to DST: approximation ratio O(nε), for any ε > 0, and
O(log3 n) in quasi-P [Charikar et al. 99]

Poly-time solvable if underlying graph has bounded treewidth .
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Reduction from Directed Steiner Tree
Directed graph H(VH,EH,w), |VH| = n, source s, set of terminals T.

Every vertex u ∈ VH becomes vertex u of temporal graph G.
Temporal edges ({u, zl

u}, l) of weight 0, for l = 1, . . . , n− 1.

Each (directed) edge e = {u, v} ∈ EH of weight w(e):
Temporal edges ({zl

u, v}, l) with weight w(e), for l = 2, . . . , n

s has “direct” edge with label n + 1 and weight 0 to every
z-vertex and to every non-terminal vertex .

G has O(n2) vertices and O(n|EH|) temporal edges .
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Minimum Temporal Connectivity (MTC)

Approximating Minimum Temporal Connectivity

Reduction from (1, 2)-Steiner tree: APX-hard for unweighted
temporal graphs.
Poly-time solvable if underlying graph is tree .
Approximation ratio 2 if underlying graph is cycle .

Reduction from Label Cover : inapproximable within
O(2log

1−ε n) , unless NP ⊆ DTIME(npoly log n) [Dodis Khanna 99]

Union of n solutions to vi-MTC: O(n1+ε)-approximation.
Reduction to Directed Steiner Forest :
O((∆M)2/3+ε)-approximation [Feldman Kortsarz Nutov 12]
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Research Directions

Complexity of distinguishing between graphs with temporal
connectivity certificates of linear size and of quadratic size?

Special cases of Minimum Temporal Connectivity where
O(1)-approximation possible?
Complexity and approximability if timelabels are determined by
simple rules ?
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Thank You!
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