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Closest Vector Problem

■ Given a basis for a L ⊂ Rd and a target t ∈ Rd,
compute the distance from t to L

■ Distance is defined in terms of the ℓp norm;
for 1 ≤ p < ∞:

∥⃗x∥p := (|x1|p + |x2|p + · · ·+ |xd|p)1/p

for p = ∞:
∥⃗x∥∞ := max

1≤i≤d
|xi|

■ CVPp —Closest Vector Problem in the ℓp norm
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Hardness of CVP

■ CVPp is NP-hard for every 1 ≤ p ≤ ∞ [vEB81]

■ CVP2 can be solved in 2n+o(n) time [ADS15]

■ Cryptographic applications require
quantitative hardness of CVP
[ADPS16,BCD+16,NIS16]:
a 2n/20-time algorithm would break these
schemes in practice



Hardness of CVP

■ CVPp is NP-hard for every 1 ≤ p ≤ ∞ [vEB81]

■ CVP2 can be solved in 2n+o(n) time [ADS15]

■ Cryptographic applications require
quantitative hardness of CVP
[ADPS16,BCD+16,NIS16]:
a 2n/20-time algorithm would break these
schemes in practice



Hardness of CVP

■ CVPp is NP-hard for every 1 ≤ p ≤ ∞ [vEB81]

■ CVP2 can be solved in 2n+o(n) time [ADS15]

■ Cryptographic applications require
quantitative hardness of CVP
[ADPS16,BCD+16,NIS16]:
a 2n/20-time algorithm would break these
schemes in practice



k-SAT
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■ n Boolean vars,m clauses, clause length≤k

■ SETH [IP99]. There exists a constant k:
no algorithm solves k-SAT in 20.99n time

■ Goal: Reduce k-SAT on n vars
to CVP on a rank-n lattice
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MAX-2-SAT

■ Given an instance of 2-SAT, we construct an
instance of CVPp, s.t.

■ If all clauses are sat —distance is small
■ If not all clauses are sat —distance is large

■ Actually, the reduction gives the number of
satisfiable clauses

■ This is an NP-hard problemMAX-2-SAT

■ Best algorithm for MAX-2-SAT runs in
2ωn/3 < 1.74n
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■ For all values of k, we want to reduce k-SAT to
CVPp

■ This would give 1.99n-hardness of CVPp under
SETH

■ A 2-SAT clause is sat iff # of sat literals is 1 or 2

■ 2 and 4 are equidistant from 3!

■ For k-SAT, we can’t find k numbers which are
equidistant from some other number...
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Generalization to k-SAT!

■ We can find k vectors which are equidistant
from some other vector!

■ Goal: Find k vectors V = (v⃗1, . . . , v⃗k) ∈ Rm×k

and t⃗ ∈ Rm, s.t.
■ for all non-zero y⃗ ∈ {0,1}k, ∥Vy⃗− t⃗∥p = 1
■ for y⃗ = 0k, ∥Vy⃗− t⃗∥p = ∥⃗t∥p > 1

0 v1

v2 v1 + v2

t∗
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Definition (Isolating Parallelepiped)
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Isolating Parallelepipeds

■ If p is an odd integer, then IPs always exist

■ If p is an even integer, then IPs exist only for
at most k ≤ p vectors

■ For any k and any p = p0 + δ(n)with δ(n) ̸= 0
and δ(n) → 0, they exist for sufficiently large n

■ For any fixed k, IPs exist for all but finitely
many values of p
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Constraints for odd p

■ This gives a system of k linear equations on
α1, . . . , αk

■ But we need a solution with all α’s
non-negative

■ M ∈ R(t)k×k, α = (α1, . . . , αk) ∈ Rk :

M · α =


1+ ε
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Odd p. Proof

■ M is stochastic with a positive eigenvalue, so it
suffices to showM is invertible:

■ Let α′ = M−1 · e1
■ α = δ1 · α′ + δ2 · 1k
■ M · α = (1+ ε,1, · · · ,1)T

■ det(M) is a piecewise combination of
polynomials of degree (k+ 1)p

■ We show that at least one of these
polynomials is non-zero
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Conclusions

■ Isolating Parallelepipeds don’t exist for even
p, and exist for almost any other p

■ If SETH holds, no 20.99n-algorithm solves
CVPp for these values of p

■ Other hardness results for lattice problems

■ SVP∞,CVPPp, . . .

■ Even hardness of approximation under
Gap-ETH for all p
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Thank you for your attention!
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