On the Quantitative Hardness of CVP

Huck Bennett, Alexander Golovnev, Noah Stephens-Davidowitz

NYCAC 2017

Outline

. Closest Vector Problem

- Applications
- Hardness
- Isolating Parallelepipeds

The Closest Vector Problem

Lattice

- A lattice \mathcal{L} is the set of all integer combinations of linearly independent basis vectors $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{R}^{d}$

$$
\mathcal{L}=\mathcal{L}\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right):=\left\{\sum_{i=1}^{n} z_{i} \vec{b}_{i}: z_{i} \in \mathbb{Z}\right\}
$$

Lattice

- A lattice \mathcal{L} is the set of all integer combinations of linearly independent basis vectors $\vec{b}_{1}, \ldots, \vec{b}_{n} \in \mathbb{R}^{d}$

$$
\mathcal{L}=\mathcal{L}\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right):=\left\{\sum_{i=1}^{n} z_{i} \vec{b}_{i}: z_{i} \in \mathbb{Z}\right\}
$$

$\square n$ is the rank of \mathcal{L}, d is the (ambient) dimension

Lattice. Example

Closest Vector Problem

■ Given a basis for a $\mathcal{L} \subset \mathbb{R}^{d}$ and a target $t \in \mathbb{R}^{d}$, compute the distance from t to \mathcal{L}

Closest Vector Problem

■ Given a basis for a $\mathcal{L} \subset \mathbb{R}^{d}$ and a target $t \in \mathbb{R}^{d}$, compute the distance from t to \mathcal{L}

- Distance is defined in terms of the ℓ_{ρ} norm; for $1 \leq p<\infty$:

$$
\|\vec{x}\|_{p}:=\left(\left|x_{1}\right|^{P}+\left|x_{2}\right|^{P}+\cdots+\left|x_{d}\right|^{P}\right)^{1 / P}
$$

for $p=\infty$:

$$
\|\vec{x}\|_{\infty}:=\max _{1 \leq i \leq d}\left|x_{i}\right|
$$

Closest Vector Problem

\square Given a basis for a $\mathcal{L} \subset \mathbb{R}^{d}$ and a target $t \in \mathbb{R}^{d}$, compute the distance from t to \mathcal{L}

- Distance is defined in terms of the ℓ_{ρ} norm; for $1 \leq \rho<\infty$:

$$
\|\vec{x}\|_{P}:=\left(\left|x_{1}\right|^{P}+\left|x_{2}\right|^{P}+\cdots+\left|x_{d}\right|^{P}\right)^{1 / P}
$$

for $p=\infty$:

$$
\|\vec{x}\|_{\infty}:=\max _{1 \leq i \leq d}\left|x_{i}\right|
$$

■ CVP $_{p}$ —Closest Vector Problem in the ℓ_{p} norm

Applications

Applications

■ Factoring polynomials over the rationals [LLL'82]

Applications

■ Factoring polynomials over the rationals [LLL'82]

■ Integer Programming [Len83,Kan87,DPV11]

Applications

■ Factoring polynomials over the rationals [LLL'82]

■ Integer Programming [Len83,Kan87,DPV11]

■ Cryptanalysis [Odl90,JS98,NS01]

Lattice-Based Cryptography

- Conjectured Quantum Security

Lattice-Based Cryptography

- Conjectured Quantum Security
- Efficiency, Parallelism, Simplicity

Lattice-Based Cryptography

- Conjectured Quantum Security
- Efficiency, Parallelism, Simplicity

■ Worst-Case Hardness Proofs

Lattice-Based Cryptography

- Conjectured Quantum Security
- Efficiency, Parallelism, Simplicity

■ Worst-Case Hardness Proofs

■ Powerful Cryptography: FHE, ABE

Lattice-Based Cryptography

- Conjectured Quantum Security
- Efficiency, Parallelism, Simplicity

■ Worst-Case Hardness Proofs

- Powerful Cryptography: FHE, ABE
- About to be Deployed

Real Life Cryptography

- GitHub, Inc. [US] https://github.com/lwe-frodo

Iwe-frodo

 (1)Post-quantum key exchange from the learning with errors problem
(https://eprint.iacr.org/2016/659

国 Repositories \& People 0

Search repositories...

Iwe-frodo

Post-quantum key exchange from the learning with errors problem from the paper "Frodo: Take off the ring! Practical, Quantum-Secure Key Exchange from LWE", published in ACM CCS 2016, https://eprint.iacr.org/2016/659
cryptography post-quantum-cryptography key-exchange-algorithms
c 19 \&4 \quad Updated on Oct 17, 2016

Real Life Cryptography

- GitHub, Inc. [US] https://github.com/lwe-frodo

2016: The National Institute of Suantum-resistant publicTechnology (NIST) is now accepting submiss for submission is November 30, 2017. Please see the post-Qua requirements and evaluation criteria. for the complete submissin

Search repositories...

Iwe-frodo

> Post-quantum key exchange from the learning with errors problem from the paper "Frodo: Take off the ring! Practical, Quantum-Secure Key Exchange from LWE", published in ACM CCS 2016, https://eprint.iacr.org/2016/659

Real Life Cryptography

- GitHub, Inc. [US] https://github.com/lwe-frodo
© This organization Search
NEWS -- December 15, 2016: The National Institute of Standards and key cryptographic algorithms. The deadine for graphy Standardization 0 247. Please see the Post-Quantum GIMED anlete submis \& People 0 noshese

GOOGIE TRSTS NEW CRVPTO IN CITROIIL TO NENI OFF OLANTIII ITTITRS
 from the paper
 Key Exchange from LWE", pübisiro

https://eprint.iacr.org/2016/659
cryptography post-quantum-cryptography
key-exchange-algorithms

- C $\quad 19 \quad \mathcal{Y}_{4}$ Updated on Oct 17,2016

Hardness

Hardness of CVP

■ CVP ${ }_{\rho}$ is NP-hard for every $1 \leq p \leq \infty$ [vEB81]

Hardness of CVP

■ CVP $_{p}$ is NP-hard for every $1 \leq p \leq \infty$ [vEB81]

- CVP_{2} can be solved in $2^{n+o(n)}$ time [ADS15]

Hardness of CVP

■ CVP $_{p}$ is NP-hard for every $1 \leq p \leq \infty$ [vEB81]

- CVP $_{2}$ can be solved in $2^{\text {n+o(n) }}$ time [ADS15]

■ Cryptographic applications require quantitative hardness of CVP [ADPS16,BCD+16,NIS16]: a $2^{n / 20-t i m e ~ a l g o r i t h m ~ w o u l d ~ b r e a k ~ t h e s e ~}$ schemes in practice

k-SAT

■ $\left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right) \wedge \ldots \wedge\left(x_{7} \vee \neg x_{4} \vee \ldots \vee x_{3}\right)$

k-SAT

■ $\left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right) \wedge \ldots \wedge\left(x_{7} \vee \neg x_{4} \vee \ldots \vee x_{3}\right)$

- n Boolean vars, m clauses, clause length $\leq k$

k-SAT

■ $\left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right) \wedge \ldots \wedge\left(x_{7} \vee \neg x_{4} \vee \ldots \vee x_{3}\right)$

- n Boolean vars, m clauses, clause length $\leq k$

■ SETH [IP99]. There exists a constant k : no algorithm solves k-SAT in $2^{0.99 n}$ time

k-SAT

■ $\left(x_{1} \vee \neg x_{2} \vee \ldots \vee x_{k}\right) \wedge \ldots \wedge\left(x_{7} \vee \neg x_{4} \vee \ldots \vee x_{3}\right)$

- n Boolean vars, m clauses, clause length $\leq k$

■ SETH [IP99]. There exists a constant k : no algorithm solves k-SAT in $2^{0.99 n}$ time

■ Goal: Reduce k-SAT on n vars to CVP on a rank-n lattice

A Very Special Case: 2-SAT

	x_{1}	x_{2}	\cdots	x_{n-1}	x_{n}	
	2α	0	\cdots	0	0	α
x_{1}	0	2α	\cdots	0	0	α
\vdots	\vdots	\vdots	\ddots	0	0	\vdots
x_{n}	0	0	\cdots	0	2α	α
$C_{1}=\left(x_{1} \vee x_{2}\right)$	2	2	\cdots	0	0	3
$C_{2}=\left(x_{1} \vee x_{n}\right)$	2	0	\cdots	0	2	3
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
$C_{m}=\left(x_{n-1} \vee x_{n}\right)$	0	0	\cdots	2	2	3

A Very Special Case: 2-SAT

	x_{1}	x_{2}	\cdots	x_{n-1}	x_{n}	
x_{1}	2α	0	\cdots	0	0	α
x_{2}	0	2α	\cdots	0	0	α
\vdots	\vdots	\vdots	\ddots	0	0	\vdots
x_{n}	0	0	\cdots	0	2α	α
$C_{1}=\left(x_{1} \vee x_{2}\right)$	2	2	\cdots	0	0	$\frac{\alpha}{3}$
$C_{2}=\left(x_{1} \vee x_{n}\right)$	2	0	\cdots	0	2	3
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
$C_{m}=\left(x_{n-1} \vee x_{n}\right)$	0	0	\cdots	2	2	3

A Very Special Case: 2-SAT

	x_{1}	x_{2}	\cdots	x_{n-1}	x_{n}	
x_{1}	2α	0	\cdots	0	0	α
x_{2}	0	2α	\cdots	0	0	α
\vdots	\vdots	\vdots	\ddots	0	0	\vdots
x_{n}	0	0	\cdots	0	2α	α
$C_{1}=\left(x_{1} \vee x_{2}\right)$	2	2	\cdots	0	0	3
$C_{2}=\left(x_{1} \vee x_{n}\right)$	2	0	\cdots	0	2	3
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
$C_{m}=\left(x_{n-1} \vee x_{n}\right)$	0	0	\cdots	2	2	3

A Very Special Case: 2-SAT. Proof

x_{1}	x_{2}	\cdots	x_{n-1}	x_{n}		
2α	0	\cdots	0	0	α	
α is very large						
	2α	\cdots	0	0	α	
\vdots	\vdots	\ddots	0	0	\vdots	
0	0	\cdots	0	2α	α	
2	2	\cdots	0	0	3	
2	0	\cdots	0	2	3	
\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	
0	0	\cdots	2	2	3	

A Very Special Case: 2-SAT. Proof

x_{1}	x_{2}	\cdots	x_{n-1}	x_{n}		
2α	0	\cdots	0	0		α
0	2α	\cdots	0	0		α is very large
\vdots	\vdots	\ddots	0	0		If $x \in\{0,1\}^{n}$,
0	0	\cdots	0	2α		first n lines give
0	distance $n \alpha^{p}$					
2	2	\cdots	0	0	3	
2	0	\cdots	0	2	3	
\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	
0	0	\cdots	2	2	3	

A Very Special Case: 2-SAT. Proof

x_{1}	x_{2}	x_{n-1}	x_{n}		
2α	0	0	0	α	
0	2α	0	0	α	en
:	\vdots	0	0		
0	0	0	2α	α	distance $n \alpha^{p}$
2	2	0	0	3	If $x \notin\{0,1\}^{n}$
2	0	0	2	3	distance is
!	!	:	:	!	$\geq(n+1) \alpha^{\rho}$
0	0	2	2	3	

A Very Special Case: 2-SAT. Proof

x_{1}	x_{2}	\cdots	x_{n-1}	x_{n}		
2α	0	\cdots	0	0		α
0	2α	\cdots	0	0	α	$\alpha,\{0,1\}^{n}$
\vdots	\vdots	\ddots	0	0		
0	0	\cdots	0	2α	α	
2	2	\cdots	0	0	3	
2	0	\cdots	0	2	3	
\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	
0	0	\cdots	2	2	3	

A Very Special Case: 2-SAT. Proof

x_{1}	x_{2}	\cdots	x_{n-1}	x_{n}			
2α	0	\cdots	0	0		α	$x \in\{0,1\}^{n}$
0	2α	\cdots	0	0		α	
\vdots	\vdots	\ddots	0	0		\vdots	sat clause con
0	0	\cdots	0	2α		α	tributes 1
2	2	\cdots	0	0		3	the distance
2	0	\cdots	0	2		3	
\vdots	\vdots	\ddots	\vdots	\vdots	\vdots		
0	0	\cdots	2	2	3		

A Very Special Case: 2-SAT. Proof

x_{1}	x_{2}	\cdots	x_{n-1}	x_{n}			
2α	0	\cdots	0	0			$x \in\{0,1\}^{n}$
0	2α	\cdots	0	0			
\vdots	\vdots	\ddots	0	0		\vdots	sat clause con-
0	0	\cdots	0	2α		α	tributes 1 to
2	2	\cdots	0	0		3	
2	0	\cdots	0	2		3	unsat clause
\vdots	\vdots	\ddots	\vdots	\vdots		\vdots	contributes
0	0	\cdots	2	2		3	$3^{p}>1$

MAX-2-SAT

■ Given an instance of 2-SAT, we construct an instance of CVP_{p}, s.t.

- If all clauses are sat -distance is small
- If not all clauses are sat -distance is large

MAX-2-SAT

■ Given an instance of 2-SAT, we construct an instance of CVP $_{p}$, s.t.

- If all clauses are sat -distance is small
- If not all clauses are sat -distance is large
- Actually, the reduction gives the number of satisfiable clauses

MAX-2-SAT

■ Given an instance of 2-SAT, we construct an instance of CVP_{p}, s.t.

- If all clauses are sat -distance is small
- If not all clauses are sat -distance is large
- Actually, the reduction gives the number of satisfiable clauses
■ This is an NP-hard problem MAX-2-SAT

MAX-2-SAT

■ Given an instance of 2-SAT, we construct an instance of CVP $_{p}$, s.t.

- If all clauses are sat -distance is small
- If not all clauses are sat -distance is large
- Actually, the reduction gives the number of satisfiable clauses
■ This is an NP-hard problem MAX-2-SAT
■ Best algorithm for MAX-2-SAT runs in $2^{\omega n / 3}<1.74^{n}$

Generalization to k-SAT?

■ For all values of k, we want to reduce k-SAT to CVP $_{\rho}$

Generalization to k-SAT?

■ For all values of k, we want to reduce k-SAT to CVP $_{\rho}$
■ This would give 1.99^{n}-hardness of CVP_{ρ} under SETH

Generalization to k-SAT?

■ For all values of k, we want to reduce k-SAT to CVP $_{p}$
■ This would give 1.99^{n}-hardness of CVP_{p} under SETH

- A 2-SAT clause is sat iff \# of sat literals is 1 or 2

Generalization to k-SAT?

■ For all values of k, we want to reduce k-SAT to CVP_{ρ}
■ This would give 1.99^{n}-hardness of CVP_{ρ} under SETH

- A 2-SAT clause is sat iff \# of sat literals is 1 or 2

■ 2 and 4 are equidistant from 3 !

Generalization to k-SAT?

■ For all values of k, we want to reduce k-SAT to CVP ${ }_{p}$
■ This would give 1.99n-hardness of CVP_{p} under SETH

- A 2-SAT clause is sat iff \# of sat literals is 1 or 2
- 2 and 4 are equidistant from 3!
- For k-SAT, we can't find k numbers which are equidistant from some other number...

Generalization to k-SAT!

■ We can find k vectors which are equidistant from some other vector!

Generalization to k-SAT!

- We can find k vectors which are equidistant from some other vector!
\square Goal: Find k vectors $V=\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right) \in \mathbb{R}^{m \times k}$ and $\vec{t} \in \mathbb{R}^{m}$, s.t.
- for all non-zero $\vec{y} \in\{0,1\}^{k},\|V \vec{y}-\vec{t}\|_{p}=1$
- for $\vec{y}=0^{k},\|V \vec{y}-\vec{t}\|_{p}=\|\vec{t}\|_{p}>1$

Generalization to k-SAT!

- We can find k vectors which are equidistant from some other vector!
\square Goal: Find k vectors $V=\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right) \in \mathbb{R}^{m \times k}$ and $\vec{t} \in \mathbb{R}^{m}$, s.t.
- for all non-zero $\vec{y} \in\{0,1\}^{k},\|V \vec{y}-\vec{t}\|_{p}=1$
- for $\vec{y}=0^{k},\|V \vec{y}-\vec{t}\|_{\rho}=\|\vec{t}\|_{\rho}>1$

Isolating Parallelepipeds

Isolating Parallelepipeds

Definition (Isolating Parallelepiped)

k vectors $V=\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right) \in \mathbb{R}^{m \times k}$ and $\vec{t} \in \mathbb{R}^{m}$

- for all non-zero $\vec{y} \in\{0,1\}^{k},\|V \vec{y}-\vec{t}\|_{\rho}=1$
- for $\vec{y}=0^{k},\|V \vec{y}-\vec{t}\|_{\rho}=\|\vec{t}\|_{\rho}>1$

Isolating Parallelepipeds in ℓ_{1}

Definition (Isolating Parallelepiped)

k vectors $V=\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}\right) \in \mathbb{R}^{m \times k}$ and $\vec{t} \in \mathbb{R}^{m}$

- for all non-zero $\vec{y} \in\{0,1\}^{k},\|V \vec{y}-\vec{t}\|_{\rho}=1$
- for $\vec{y}=0^{k},\|V \vec{y}-\vec{t}\|_{\rho}=\|\vec{t}\|_{\rho}>1$

Isolating Parallelepipeds in ℓ_{2}

Isolating Parallelepipeds in ℓ_{2}

Can we do for 3 vectors?

Isolating Parallelepipeds in ℓ_{2}

Can we do for 3 vectors? No!

Isolating Parallelepipeds

If p is an odd integer, then IPs always exist

Isolating Parallelepipeds

■ If p is an odd integer, then IPs always exist

- If p is an even integer, then IPs exist only for at most $k \leq \rho$ vectors

Isolating Parallelepipeds

■ If p is an odd integer, then IPs always exist
■ If p is an even integer, then IPs exist only for at most $k \leq p$ vectors

■ For any k and any $p=p_{0}+\delta(n)$ with $\delta(n) \neq 0$ and $\delta(n) \rightarrow 0$, they exist for sufficiently large n

Isolating Parallelepipeds

■ If p is an odd integer, then IPs always exist

- If p is an even integer, then IPs exist only for at most $k \leq p$ vectors

■ For any k and any $p=p_{0}+\delta(n)$ with $\delta(n) \neq 0$ and $\delta(n) \rightarrow 0$, they exist for sufficiently large n

■ For any fixed k, IPs exist for all but finitely many values of p

Candidate for odd p

$$
V:=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & 1 \\
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1 \\
-1 & -1 & -1
\end{array}\right), \quad \vec{t}:=\left(\begin{array}{l}
t \\
t
\end{array}\right)
$$

Candidate for odd p

$$
V:=\begin{aligned}
& \alpha_{3} \times \\
& \alpha_{2} \times \\
& \alpha_{2} \times \\
& \alpha_{2} \times \\
& \alpha_{1} \times \\
& \alpha_{1} \times \\
& \alpha_{1} \times \\
& \alpha_{0} \times
\end{aligned}\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & 1 \\
-1 & 1 & 1 \\
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1 \\
-1 & -1 & -1
\end{array}\right), \quad \vec{t}:=\left(\begin{array}{c}
t \\
t
\end{array}\right) .
$$

Constraints for odd ρ

This gives a system of k linear equations on $\alpha_{1}, \ldots, \alpha_{k}$

Constraints for odd ρ

- This gives a system of k linear equations on $\alpha_{1}, \ldots, \alpha_{k}$
- But we need a solution with all α 's non-negative

Constraints for odd p

- This gives a system of k linear equations on
$\alpha_{1}, \ldots, \alpha_{k}$
- But we need a solution with all α 's non-negative
■ $M \in \mathbb{R}(t)^{k \times k}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{R}^{k}$:

$$
M \cdot \alpha=\left(\begin{array}{c}
1+\varepsilon \\
1 \\
\vdots \\
1
\end{array}\right)
$$

Odd p. Proof

■ M is stochastic with a positive eigenvalue, so it suffices to show M is invertible:

Odd p. Proof

■ M is stochastic with a positive eigenvalue, so it suffices to show M is invertible:

- Let $\alpha^{\prime}=M^{-1} \cdot e_{1}$

Odd p. Proof

■ M is stochastic with a positive eigenvalue, so it suffices to show M is invertible:

- Let $\alpha^{\prime}=M^{-1} \cdot e_{1}$
- $\alpha=\delta_{1} \cdot \alpha^{\prime}+\delta_{2} \cdot \mathbf{1}_{\boldsymbol{k}}$

Odd p. Proof

■ M is stochastic with a positive eigenvalue, so it suffices to show M is invertible:

- Let $\alpha^{\prime}=M^{-1} \cdot \boldsymbol{e}_{1}$
- $\alpha=\delta_{1} \cdot \alpha^{\prime}+\delta_{2} \cdot \mathbf{1}_{k}$
- $M \cdot \alpha=(1+\varepsilon, 1, \cdots, 1)^{T}$

Odd p. Proof

■ M is stochastic with a positive eigenvalue, so it suffices to show M is invertible:

- Let $\alpha^{\prime}=M^{-1} \cdot e_{1}$
- $\alpha=\delta_{1} \cdot \alpha^{\prime}+\delta_{2} \cdot \mathbf{1}_{k}$
- $M \cdot \alpha=(1+\varepsilon, 1, \cdots, 1)^{T}$

■ $\operatorname{det}(M)$ is a piecewise combination of polynomials of degree $(k+1) p$

Odd p. Proof

■ M is stochastic with a positive eigenvalue, so it suffices to show M is invertible:

- Let $\alpha^{\prime}=M^{-1} \cdot e_{1}$
- $\alpha=\delta_{1} \cdot \alpha^{\prime}+\delta_{2} \cdot \mathbf{1}_{k}$
- $M \cdot \alpha=(1+\varepsilon, 1, \cdots, 1)^{T}$

■ $\operatorname{det}(M)$ is a piecewise combination of polynomials of degree $(k+1) p$
■ We show that at least one of these polynomials is non-zero

Conclusions

■ Isolating Parallelepipeds don't exist for even p, and exist for almost any other p

- If SETH holds, no $2^{0.99 n}$-algorithm solves CVP_{p} for these values of p

Conclusions

■ Isolating Parallelepipeds don't exist for even p, and exist for almost any other p

- If SETH holds, no $2^{0.99 n}$-algorithm solves CVP_{p} for these values of p
Other hardness results for lattice problems
- $\mathrm{SVP}_{\infty}, \mathrm{CVPP}_{\rho}, \ldots$

Conclusions

■ Isolating Parallelepipeds don't exist for even p, and exist for almost any other p

- If SETH holds, no $2^{0.99 n \text {-algorithm solves }}$ CVP_{p} for these values of p
■ Other hardness results for lattice problems
- $\mathrm{SVP}_{\infty}, \mathrm{CVPP}_{p}, \ldots$

■ Even hardness of approximation under Gap-ETH for all p

Thank you for your attention!

