On the Quantitative Hardness of CVP

Huck Bennett, Alexander Golovnev, Noah Stephens-Davidowitz

NYCAC 2017

Outline

- Closest Vector Problem
- Applications
- Hardness
- Isolating Parallelepipeds

The Closest Vector Problem

Lattice

A lattice L is the set of all integer combinations of linearly independent basis vectors b₁,..., b_n ∈ ℝ^d

$$\mathcal{L} = \mathcal{L}(\vec{b}_1, \ldots, \vec{b}_n) := \left\{ \sum_{i=1}^n z_i \vec{b}_i : z_i \in \mathbb{Z} \right\}$$

Lattice

A lattice L is the set of all integer combinations of linearly independent basis vectors b₁,..., b_n ∈ ℝ^d

$$\mathcal{L} = \mathcal{L}(\vec{b}_1, \ldots, \vec{b}_n) := \left\{ \sum_{i=1}^n z_i \vec{b}_i : z_i \in \mathbb{Z} \right\}$$

 \blacksquare *n* is the rank of \mathcal{L} , *d* is the (ambient) dimension

Closest Vector Problem

Given a basis for a $\mathcal{L} \subset \mathbb{R}^d$ and a target $t \in \mathbb{R}^d$, compute the distance from t to \mathcal{L}

Closest Vector Problem

- Given a basis for a $\mathcal{L} \subset \mathbb{R}^d$ and a target $t \in \mathbb{R}^d$, compute the distance from t to \mathcal{L}
- Distance is defined in terms of the l_p norm; for 1 ≤ p < ∞:</p>

$$\begin{split} \|\vec{x}\|_{\rho} &:= (|x_{1}|^{\rho} + |x_{2}|^{\rho} + \dots + |x_{d}|^{\rho})^{1/\rho} \\ \\ \text{for } \rho &= \infty \text{:} \\ \|\vec{x}\|_{\infty} &:= \max_{1 \le i \le d} |x_{i}| \end{split}$$

Closest Vector Problem

- Given a basis for a $\mathcal{L} \subset \mathbb{R}^d$ and a target $t \in \mathbb{R}^d$, compute the distance from t to \mathcal{L}
- Distance is defined in terms of the l_p norm; for 1 ≤ p < ∞:</p>

$$\|ec{x}\|_{
ho} := (|x_1|^{
ho} + |x_2|^{
ho} + \cdots + |x_d|^{
ho})^{1/
ho}$$

for
$$oldsymbol{
ho} = \infty$$
:
 $\|ec{x}\|_{\infty} := \max_{1 \leq i \leq d} |x_i|$

• $\operatorname{CVP}_{\rho}$ —Closest Vector Problem in the ℓ_{ρ} norm

Factoring polynomials over the rationals [LLL'82]

Factoring polynomials over the rationals [LLL'82]

Integer Programming [Len83,Kan87,DPV11]

Factoring polynomials over the rationals [LLL'82]

Integer Programming [Len83,Kan87,DPV11]

Cryptanalysis [Odl90, JS98, NS01]

Conjectured Quantum Security

- Conjectured Quantum Security
- Efficiency, Parallelism, Simplicity

- Conjectured Quantum Security
- Efficiency, Parallelism, Simplicity
- Worst-Case Hardness Proofs

- Conjectured Quantum Security
- Efficiency, Parallelism, Simplicity
- Worst-Case Hardness Proofs
- Powerful Cryptography: FHE, ABE

- Conjectured Quantum Security
- Efficiency, Parallelism, Simplicity
- Worst-Case Hardness Proofs
- Powerful Cryptography: FHE, ABE
- About to be Deployed

Real Life Cryptography

GitHub, Inc. [US] https://github.com/lwe-frodo							
()	This organization	Search	Pull requests	Issues	Marketplace	Gist	
Post-quantum key exchange from the learning with errors problem https://eprint.iacr.org/2016/659							
₽ Re	positories	People 0					
Searc	Search repositories						
lwe-f	rodo						
Post-quantum key exchange from the learning with errors problem — from the paper "Frodo: Take off the ring! Practical, Quantum-Secure Key Exchange from LWE", published in ACM CCS 2016, https://eprint.iacr.org/2016/659							
crypto	graphy post-quar	ntum-cryptography	key-exchange-algorithms				
• C 1	🕈 19	ed on Oct 17, 2016					

Real Life Cryptography

GitHub, Inc. [US] https://github.com/lwe-frodo				
NEWS December 15, 2 Technology (NIST) is now technology (NIST) is now technology (NIST) is now	tion Search 116: The National Institute of St accepting submissions for quart ms. The deadline for submission mst-Quantum Cryptography Stan st-Quantum Cryptography Stan st-Quantum Cryptography Stan	andards and htum-resistant public- on is November 30, dardization menu at left n criteria.		
2017. Please see interview of the complete submiss for the complete submiss	In requirements			
Iwe-frodo Post-quantum key e	xchange from the learning with errors probler	n—		
from the paper "Frodo: Take off the ring! Practical, Quantum-Secure Key Exchange from LWE", published in ACM CCS 2016, https://eprint.iacr.org/2016/659				
●C ★19 ¥4	Jpdated on Oct 17, 2016			

Real Life Cryptography

Hardness

Hardness of CVP

• $\operatorname{CVP}_{\rho}$ is NP-hard for every $1 \leq \rho \leq \infty$ [vEB81]

- $\operatorname{CVP}_{\rho}$ is NP-hard for every $1 \leq \rho \leq \infty$ [vEB81]
- CVP₂ can be solved in 2^{n+o(n)} time [ADS15]

- $\operatorname{CVP}_{\rho}$ is NP-hard for every $1 \leq \rho \leq \infty$ [vEB81]
- CVP₂ can be solved in 2^{*n*+o(*n*)} time [ADS15]
- Cryptographic applications require quantitative hardness of CVP [ADPS16,BCD+16,NIS16]: a 2^{n/20}-time algorithm would break these schemes in practice

$\blacksquare (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \ldots \land (x_7 \lor \neg x_4 \lor \ldots \lor x_3)$

$\blacksquare (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \ldots \land (x_7 \lor \neg x_4 \lor \ldots \lor x_3)$

■ *n* Boolean vars, *m* clauses, clause length ≤*k*

$\blacksquare (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \ldots \land (x_7 \lor \neg x_4 \lor \ldots \lor x_3)$

■ *n* Boolean vars, *m* clauses, clause length ≤*k*

SETH [IP99]. There exists a constant k: no algorithm solves k-SAT in 2^{0.99n} time

$\blacksquare (x_1 \lor \neg x_2 \lor \ldots \lor x_k) \land \ldots \land (x_7 \lor \neg x_4 \lor \ldots \lor x_3)$

■ *n* Boolean vars, *m* clauses, clause length ≤*k*

SETH [IP99]. There exists a constant k: no algorithm solves k-SAT in 2^{0.99n} time

■ Goal: Reduce *k*-SAT on *n* vars to CVP on a rank-*n* lattice

A Very Special Case: 2-SAT

	<i>x</i> ₁	<i>X</i> ₂	•••	X _{n-1}	Xn	
<i>x</i> ₁	2 α	0	•••	0	0	α
<i>x</i> ₂	0	2α	•••	0	0	α
• • •	:	•	••.	0	0	:
Xn	0	0	•••	0	2α	α
$C_1 = (x_1 \vee x_2)$	2	2	• • •	0	0	3
$C_2 = (x_1 \vee x_n)$	2	0	•••	0	2	3
•	:	:	••.	:	:	:
$C_m = (x_{n-1} \vee x_n)$	0	0	•••	2	2	3

A Very Special Case: 2-SAT

	<i>x</i> ₁	X 2	•••	X _{n-1}	Xn	
<i>x</i> ₁	2α	0	•••	0	0	α
<i>x</i> ₂	0	2α	•••	0	0	α
• •	:	:	•••	0	0	:
Xn	0	0	•••	0	2α	α
$C_1 = (x_1 \vee x_2)$	2	2	•••	0	0	3
$C_2 = (x_1 \vee x_n)$	2	0	•••	0	2	3
•	:	:	•••	•	:	:
$C_m = (x_{n-1} \vee x_n)$	0	0		2	2	3

A Very Special Case: 2-SAT

	<i>x</i> ₁	X ₂	•••	<i>X</i> _{n-1}	Xn	
<i>x</i> ₁	2α	0	•••	0	0	α
<i>x</i> ₂	0	2α	•••	0	0	α
•	:	:	•••	0	0	:
Xn	0	0	•••	0	2α	α
$C_1 = (x_1 \vee x_2)$	2	2	•••	0	0	3
$C_2 = (x_1 \vee x_n)$	2	0	•••	0	2	3
•	:	:	•••	•	•	:
$C_m = (x_{n-1} \lor x_n)$	0	0		2	2	3

		Xn	X _{n-1}	•••	<i>X</i> ₂	<i>X</i> ₁
, is very large	α	0	0	•••	0	2α
α is very large	α	0	0	•••	2α	0
$II X \in \{0, 1\}^n$:	0	0	••.	:	•
distance o	α	2α	0	•••	0	0
distance $n\alpha^{p}$	3	0	0		2	2
$ \Gamma X \notin \{0, 1\}^n,$	3	2	0		0	2
		•		·	•	
$\geq (n+1)\alpha^{p}$	3	2	2		0	0

$$x_1$$
 x_2
 \cdots
 x_{n-1}
 x_n
 2α
 0
 \cdots
 0
 0
 α
 0
 2α
 \cdots
 0
 0
 α
 \vdots
 \vdots
 \cdots
 0
 0
 \vdots
 0
 0
 \cdots
 0
 2α
 α
 2
 2
 \cdots
 0
 2α
 α
 2
 2
 \cdots
 0
 2
 3
 \vdots
 \vdots
 \cdots
 0
 2
 3
 \vdots
 \vdots
 \cdots
 2
 2
 3

<i>X</i> ₁	X 2	•••	<i>X</i> _{n-1}	Xn			
2α	0	•••	0	0	_	α	$x \in \{0, 1\}^n$
0	2α	•••	0	0		α	
:	•	••.	0	0		:	Sat clause con-
0	0	•••	0	2α		α	the distance
2	2	•••	0	0		3	
2	0	•••	0	2		3	
:	:	•••	:	:		:	
0	0	•••	2	2		3	

<i>X</i> ₁	<i>X</i> ₂	•••	X _{n-1}	Xn		
2α	0	•••	0	0	α	$x \in \{0, 1\}^n$
0	2α	•••	0	0	α	
:	:	۰.	0	0	:	Sat clause con-
0	0	•••	0	2α	α	the distance
2	2	•••	0	0	3	
2	0	•••	0	2	3	unsat clause
:	:	•••	•	:	:	contributes
0	0	•••	2	2	3	3 ^{<i>p</i>} > 1

- Given an instance of 2-SAT, we construct an instance of CVP_p, s.t.
 - If all clauses are sat —distance is small
 - If not all clauses are sat —distance is large

- Given an instance of 2-SAT, we construct an instance of CVP_p, s.t.
 - If all clauses are sat —distance is small
 - If not all clauses are sat —distance is large
- Actually, the reduction gives the number of satisfiable clauses

- Given an instance of 2-SAT, we construct an instance of CVP_p, s.t.
 - If all clauses are sat —distance is small
 - If not all clauses are sat —distance is large
- Actually, the reduction gives the number of satisfiable clauses
- This is an NP-hard problem MAX-2-SAT

- Given an instance of 2-SAT, we construct an instance of CVP_p, s.t.
 - If all clauses are sat —distance is small
 - If not all clauses are sat —distance is large
- Actually, the reduction gives the number of satisfiable clauses
- This is an NP-hard problem MAX-2-SAT
- Best algorithm for MAX-2-SAT runs in $2^{\omega n/3} < 1.74^n$

■ For all values of *k*, we want to reduce *k*-SAT to CVP_p

- For all values of *k*, we want to reduce *k*-SAT to CVP_p
- This would give 1.99ⁿ-hardness of CVP_p under SETH

- For all values of *k*, we want to reduce *k*-SAT to CVP_p
- This would give 1.99ⁿ-hardness of CVP_p under SETH
- A 2-SAT clause is sat iff # of sat literals is 1 or 2

- For all values of *k*, we want to reduce *k*-SAT to CVP_p
- This would give 1.99ⁿ-hardness of CVP_p under SETH
- A 2-SAT clause is sat iff # of sat literals is 1 or 2
- 2 and 4 are equidistant from 3!

- For all values of *k*, we want to reduce *k*-SAT to CVP_p
- This would give 1.99ⁿ-hardness of CVP_p under SETH
- A 2-SAT clause is sat iff # of sat literals is 1 or 2
- 2 and 4 are equidistant from 3!
- For *k*-SAT, we can't find *k* numbers which are equidistant from some other number...

We can find k vectors which are equidistant from some other vector!

- We can find k vectors which are equidistant from some other vector!
- **Goal:** Find *k* vectors $V = (\vec{v_1}, \dots, \vec{v_k}) \in \mathbb{R}^{m \times k}$ and $\vec{t} \in \mathbb{R}^m$, s.t.
 - for all non-zero $\vec{y} \in \{0, 1\}^k$, $\|V\vec{y} \vec{t}\|_p = 1$
 - for $\vec{y} = 0^k$, $\|V\vec{y} \vec{t}\|_{\rho} = \|\vec{t}\|_{\rho} > 1$

- We can find k vectors which are equidistant from some other vector!
- **Goal:** Find *k* vectors $V = (\vec{v_1}, \dots, \vec{v_k}) \in \mathbb{R}^{m \times k}$ and $\vec{t} \in \mathbb{R}^m$, s.t.
 - for all non-zero $\vec{y} \in \{0, 1\}^k$, $\|V\vec{y} \vec{t}\|_{\rho} = 1$ • for $\vec{y} = 0^k$, $\|V\vec{y} - \vec{t}\|_{\rho} = \|\vec{t}\|_{\rho} > 1$

Definition (Isolating Parallelepiped)

k vectors $V = (\vec{v_1}, \dots, \vec{v_k}) \in \mathbb{R}^{m imes k}$ and $\vec{t} \in \mathbb{R}^m$

Definition (Isolating Parallelepiped)

k vectors $V = (ec{v_1}, \dots, ec{v_k}) \in \mathbb{R}^{m imes k}$ and $ec{t} \in \mathbb{R}^m$

Can we do for 3 vectors?

Can we do for 3 vectors? No!

■ If *p* is an odd integer, then IPs always exist

- If *p* is an odd integer, then IPs always exist
- If p is an even integer, then IPs exist only for at most k ≤ p vectors

- If *p* is an odd integer, then IPs always exist
- If p is an even integer, then IPs exist only for at most k ≤ p vectors
- For any k and any p = p₀ + δ(n) with δ(n) ≠ 0 and δ(n) → 0, they exist for sufficiently large n

- If *p* is an odd integer, then IPs always exist
- If p is an even integer, then IPs exist only for at most k ≤ p vectors
- For any k and any p = p₀ + δ(n) with δ(n) ≠ 0 and δ(n) → 0, they exist for sufficiently large n
- For any fixed k, IPs exist for all but finitely many values of p

Candidate for odd p

Candidate for odd p

Constraints for odd p

This gives a system of k linear equations on $\alpha_1, \ldots, \alpha_k$

Constraints for odd ρ

This gives a system of k linear equations on α₁,..., α_k
 But we need a solution with all α's non-negative
Constraints for odd ρ

This gives a system of *k* linear equations on $\alpha_1, \ldots, \alpha_k$

\ 1 /

But we need a solution with all α's non-negative

$$M \in \mathbb{R}(t)^{k \times k}, \alpha = (\alpha_1, \dots, \alpha_k) \in \mathbb{R}^k :$$
$$M \cdot \alpha = \begin{pmatrix} 1 + \varepsilon \\ 1 \\ \vdots \end{pmatrix}$$

Odd p. Proof

M is stochastic with a positive eigenvalue, so it suffices to show M is invertible: M is stochastic with a positive eigenvalue, so it suffices to show M is invertible:

• Let $\alpha' = M^{-1} \cdot e_1$

Odd p. Proof

M is stochastic with a positive eigenvalue, so it suffices to show M is invertible:

• Let
$$\alpha' = M^{-1} \cdot e_1$$

•
$$\alpha = \delta_1 \cdot \alpha' + \delta_2 \cdot \mathbf{1}_k$$

Odd p. Proof

M is stochastic with a positive eigenvalue, so it suffices to show M is invertible:

• Let
$$\alpha' = M^{-1} \cdot e_1$$

• $\alpha = \delta_1 \cdot \alpha' + \delta_2 \cdot \mathbf{1}_k$

•
$$M \cdot \alpha = (1 + \varepsilon, 1, \cdots, 1)^7$$

- M is stochastic with a positive eigenvalue, so it suffices to show M is invertible:
 - Let $\alpha' = M^{-1} \cdot e_1$

$$\bullet \ \alpha = \delta_1 \cdot \alpha' + \delta_2 \cdot \mathbf{1}_k$$

•
$$\boldsymbol{M} \cdot \boldsymbol{\alpha} = (\mathbf{1} + \varepsilon, \mathbf{1}, \cdots, \mathbf{1})^T$$

det(M) is a piecewise combination of polynomials of degree (k+1)p

- M is stochastic with a positive eigenvalue, so it suffices to show M is invertible:
 - Let $\alpha' = M^{-1} \cdot e_1$

$$\bullet \ \alpha = \delta_1 \cdot \alpha' + \delta_2 \cdot \mathbf{1}_k$$

•
$$\boldsymbol{M} \cdot \boldsymbol{\alpha} = (\mathbf{1} + \varepsilon, \mathbf{1}, \cdots, \mathbf{1})^T$$

- det(M) is a piecewise combination of polynomials of degree (k+1)p
- We show that at least one of these polynomials is non-zero

Conclusions

- Isolating Parallelepipeds don't exist for even p, and exist for almost any other p
 - If SETH holds, no 2^{0.99n}-algorithm solves
 CVP_p for these values of p

Conclusions

- Isolating Parallelepipeds don't exist for even p, and exist for almost any other p
 - If SETH holds, no 2^{0.99n}-algorithm solves
 CVP_p for these values of p
- Other hardness results for lattice problems
 - $SVP_{\infty}, CVPP_{\rho}, \ldots$

Conclusions

- Isolating Parallelepipeds don't exist for even p, and exist for almost any other p
 - If SETH holds, no 2^{0.99n}-algorithm solves
 CVP_p for these values of p
- Other hardness results for lattice problems
 - $SVP_{\infty}, CVPP_{\rho}, \ldots$
- Even hardness of approximation under Gap-ETH for all p

Thank you for your attention!