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B nisthe rank of £, dis the (ambient) dimension
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Closest Vector Problem

B Given a basis for a £ ¢ R9and a target £ € RY,
compute the distance from tto £
B Distance is defined in terms of the ¢, norm;
for1 < p < oo:
X5 := (%P + [%2lP + - - - + [x4?)"/?

for p = oc:

X[ == max [x]
1<i<d

B CVP,—Closest Vector Problemin the ¢, norm
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Applications

B Factoring polynomials over the rationals
[LLL'82]

B Integer Programming [Len83,Kan87,DPV11]

B Cryptanalysis [0dl90,JS98,NS01]
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B Conjectured Quantum Security

B Efficiency, Parallelism, Simplicity
B Worst-Case Hardness Proofs

B Powerful Cryptography: FHE, ABE

B About to be Deployed
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Hardness of CVP

B CVP,is NP-hard for every 1 < p < oo [VEB81]
B CVP, can be solved in 279" time [ADS15]

B Cryptographic applications require
quantitative hardness of CVP
[ADPS16,BCD+16,NIS16]:

a 2"/20-time algorithm would break these
schemes in practice
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k-SAT

| (X1 \/—|X2\/...\/Xk)/\.../\(X7\/—|X4\/...\/X3)
B 1 Boolean vars, m clauses, clause length <k

B SETH [IP99]. There exists a constant k:
no algorithm solves k-SAT in 2°°°" time

B Goal: Reduce k-SAT on nvars
to CVP on a rank-n lattice



A Very Special Case: 2-SAT

X1 X2 Xn—1 Xp
X4 2« 0 0 0 «
X7 0 2« 0 0 «

. : 0 0
Xn 0O O 0 20 «
G = (X1 V Xz) 2 2 0 0 3
G = (X1 V Xp) 2 0 0 2 3
Ch=Xr-1VX,) 0O 0 ..o 2 2 3
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X1
X2
Xn
G = (X1 V Xz)

G = (X1 V Xn)

Cm — (Xn—1 \ Xn)
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ais very large
IfF x € {0,1}",
first nlines give
distance na?

If x ¢ {0,1}",
. distance is
: > (n+1)aP
0O O 2 2 3
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A Very Special Case: 2-SAT. Proof

X1 X2 - Xp—1 Xp
200 0 0 0 a x€{0,1}"
0 2« 0 0 Q
L . sat clause con-
: : 0 0 )

tributes 1 to
0O O 0 2« Q

the distance

unsat  clause
contributes
3P > 1
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MAX-2-SAT

B Given an instance of 2-SAT, we construct an
instance of CVP,, s.t.
m |Fall clauses are sat —distance is small
m [F not all clauses are sat —distance is large
B Actually, the reduction gives the number of
satisfiable clauses

B This is an NP-hard problem MAX-2-SAT

B Best algorithm for MAX-2-SAT runs in
2403 < 1.74"
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Generalization to k-SAT?

For all values of k, we want to reduce k-SAT to

This would give 1.99"-hardness of CVP, under
SETH

A 2-SAT clause is sat iff # of sat literalsis 1 or 2
2 and 4 are equidistant from 3!

For k-SAT, we can’t find K numbers which are
equidistant from some other number...
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Generalization to k~-SAT!

B We can find kvectors which are equidistant
from some other vector!
B Goal: Find kvectors V= (v;,..., V) € R™K
and t € R™, s.t.
s forall non-zero y € {0, 1} |Vy— €|, = 1
 For j= 0, [ V5i— &, = £, > 1

mv2
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[/

0

Can we do for 3 vectors? No!
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Isolating Parallelepipeds

M If pis an odd integer, then IPs always exist

M If pis an even integer, then IPs exist only fFor
at most k < pvectors

B Foranykandany p= py+ do(n)with §(n) # 0
and 6(n) — 0, they exist for sufficiently large n

B For any fixed k, IPs exist for all but finitely
many values of p
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Candidate for odd p

a3><(1 1 1\ (t\

ap X 1T 1 -1 t

Qi X 1T -1 1 £

Qi X -1 1 1 2 t
V:: t::

Qg X 1T -1 -1 |’ t

aq X -1 1 -1 t

aq X -1 -1 1 t

aox \ =1 -1 -1 \¢/
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Constraints for odd p

B This gives a system of klinear equations on
a1,...,0k

B But we need a solution with all o's
non-negative

B McR(O a=(aq,...,04) € R¥:

14+¢
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Odd p. Proof

B Mis stochastic with a positive eigenvalue, so it
suffices to show M is invertible:
m Lletd/ =M1 e1
B — 0 -Oé/—|—52-1k
s M-a=(1+¢1,---,1)7
B det(M) is a piecewise combination of
polynomials of degree (k+ 1)p

B We show that at least one of these
polynomials is non-zero
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Conclusions

M Isolating Parallelepipeds don't exist for even
p, and exist for almost any other p

a If SETH holds, no 2%°°"-algorithm solves
CVP,, for these values of p

B Other hardness results for lattice problems
s SVP,.,CVPP,, ...
B Even hardness of approximation under
Gap-ETH for all p



Thank you for your attention!
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