
On the Quantitative Hardness
of CVP

Huck Bennett,
Alexander Golovnev,
Noah Stephens-Davidowitz

NYCAC 2017

Outline

■ Closest Vector Problem

■ Applications

■ Hardness

■ Isolating Parallelepipeds

The Closest Vector Problem

Lattice

■ A lattice L is the set of all integer
combinations of linearly independent basis
vectors b⃗1, . . . , b⃗n ∈ Rd

L = L(b⃗1, . . . , b⃗n) :=
{ n∑

i=1

zib⃗i : zi ∈ Z
}

■ n is the rank of L, d is the (ambient) dimension

Lattice

■ A lattice L is the set of all integer
combinations of linearly independent basis
vectors b⃗1, . . . , b⃗n ∈ Rd

L = L(b⃗1, . . . , b⃗n) :=
{ n∑

i=1

zib⃗i : zi ∈ Z
}

■ n is the rank of L, d is the (ambient) dimension

Lattice. Example

b1

b2

Lattice. Example

b1

b2

b1 + b2

Lattice. Example

b1

b2

b1 + b2

2b1 + b2

Lattice. Example

b1

b2

b1 + b2

2b1 + b2

Lattice. Example

b1

b2

b1 + b2

2b1 + b2

t

Lattice. Example

b1

b2

b1 + b2

2b1 + b2

t

Lattice. Example

b1

b2

Lattice. Example

b1

b2

t

Lattice. Example

b1

b2

t

Closest Vector Problem

■ Given a basis for a L ⊂ Rd and a target t ∈ Rd,
compute the distance from t to L

■ Distance is defined in terms of the ℓp norm;
for 1 ≤ p < ∞:

∥⃗x∥p := (|x1|p + |x2|p + · · ·+ |xd|p)1/p

for p = ∞:
∥⃗x∥∞ := max

1≤i≤d
|xi|

■ CVPp —Closest Vector Problem in the ℓp norm

Closest Vector Problem

■ Given a basis for a L ⊂ Rd and a target t ∈ Rd,
compute the distance from t to L

■ Distance is defined in terms of the ℓp norm;
for 1 ≤ p < ∞:

∥⃗x∥p := (|x1|p + |x2|p + · · ·+ |xd|p)1/p

for p = ∞:
∥⃗x∥∞ := max

1≤i≤d
|xi|

■ CVPp —Closest Vector Problem in the ℓp norm

Closest Vector Problem

■ Given a basis for a L ⊂ Rd and a target t ∈ Rd,
compute the distance from t to L

■ Distance is defined in terms of the ℓp norm;
for 1 ≤ p < ∞:

∥⃗x∥p := (|x1|p + |x2|p + · · ·+ |xd|p)1/p

for p = ∞:
∥⃗x∥∞ := max

1≤i≤d
|xi|

■ CVPp —Closest Vector Problem in the ℓp norm

Applications

Applications

■ Factoring polynomials over the rationals
[LLL’82]

■ Integer Programming [Len83,Kan87,DPV11]

■ Cryptanalysis [Odl90,JS98,NS01]

Applications

■ Factoring polynomials over the rationals
[LLL’82]

■ Integer Programming [Len83,Kan87,DPV11]

■ Cryptanalysis [Odl90,JS98,NS01]

Applications

■ Factoring polynomials over the rationals
[LLL’82]

■ Integer Programming [Len83,Kan87,DPV11]

■ Cryptanalysis [Odl90,JS98,NS01]

Lattice-Based Cryptography

■ Conjectured Quantum Security

■ Efficiency, Parallelism, Simplicity

■ Worst-Case Hardness Proofs

■ Powerful Cryptography: FHE, ABE

■ About to be Deployed

Lattice-Based Cryptography

■ Conjectured Quantum Security

■ Efficiency, Parallelism, Simplicity

■ Worst-Case Hardness Proofs

■ Powerful Cryptography: FHE, ABE

■ About to be Deployed

Lattice-Based Cryptography

■ Conjectured Quantum Security

■ Efficiency, Parallelism, Simplicity

■ Worst-Case Hardness Proofs

■ Powerful Cryptography: FHE, ABE

■ About to be Deployed

Lattice-Based Cryptography

■ Conjectured Quantum Security

■ Efficiency, Parallelism, Simplicity

■ Worst-Case Hardness Proofs

■ Powerful Cryptography: FHE, ABE

■ About to be Deployed

Lattice-Based Cryptography

■ Conjectured Quantum Security

■ Efficiency, Parallelism, Simplicity

■ Worst-Case Hardness Proofs

■ Powerful Cryptography: FHE, ABE

■ About to be Deployed

Real Life Cryptography

Real Life Cryptography

Real Life Cryptography

Hardness

Hardness of CVP

■ CVPp is NP-hard for every 1 ≤ p ≤ ∞ [vEB81]

■ CVP2 can be solved in 2n+o(n) time [ADS15]

■ Cryptographic applications require
quantitative hardness of CVP
[ADPS16,BCD+16,NIS16]:
a 2n/20-time algorithm would break these
schemes in practice

Hardness of CVP

■ CVPp is NP-hard for every 1 ≤ p ≤ ∞ [vEB81]

■ CVP2 can be solved in 2n+o(n) time [ADS15]

■ Cryptographic applications require
quantitative hardness of CVP
[ADPS16,BCD+16,NIS16]:
a 2n/20-time algorithm would break these
schemes in practice

Hardness of CVP

■ CVPp is NP-hard for every 1 ≤ p ≤ ∞ [vEB81]

■ CVP2 can be solved in 2n+o(n) time [ADS15]

■ Cryptographic applications require
quantitative hardness of CVP
[ADPS16,BCD+16,NIS16]:
a 2n/20-time algorithm would break these
schemes in practice

k-SAT

■ (x1 ∨ ¬x2 ∨ . . . ∨ xk) ∧ . . . ∧ (x7 ∨ ¬x4 ∨ . . . ∨ x3)

■ n Boolean vars,m clauses, clause length≤k

■ SETH [IP99]. There exists a constant k:
no algorithm solves k-SAT in 20.99n time

■ Goal: Reduce k-SAT on n vars
to CVP on a rank-n lattice

k-SAT

■ (x1 ∨ ¬x2 ∨ . . . ∨ xk) ∧ . . . ∧ (x7 ∨ ¬x4 ∨ . . . ∨ x3)

■ n Boolean vars,m clauses, clause length≤k

■ SETH [IP99]. There exists a constant k:
no algorithm solves k-SAT in 20.99n time

■ Goal: Reduce k-SAT on n vars
to CVP on a rank-n lattice

k-SAT

■ (x1 ∨ ¬x2 ∨ . . . ∨ xk) ∧ . . . ∧ (x7 ∨ ¬x4 ∨ . . . ∨ x3)

■ n Boolean vars,m clauses, clause length≤k

■ SETH [IP99]. There exists a constant k:
no algorithm solves k-SAT in 20.99n time

■ Goal: Reduce k-SAT on n vars
to CVP on a rank-n lattice

k-SAT

■ (x1 ∨ ¬x2 ∨ . . . ∨ xk) ∧ . . . ∧ (x7 ∨ ¬x4 ∨ . . . ∨ x3)

■ n Boolean vars,m clauses, clause length≤k

■ SETH [IP99]. There exists a constant k:
no algorithm solves k-SAT in 20.99n time

■ Goal: Reduce k-SAT on n vars
to CVP on a rank-n lattice

A Very Special Case: 2-SAT

x1 x2 · · · xn−1 xn
x1 2α 0 · · · 0 0
x2 0 2α · · · 0 0
... 0 0
xn 0 0 · · · 0 2α

C1 = (x1 ∨ x2) 2 2 · · · 0 0
C2 = (x1 ∨ xn) 2 0 · · · 0 2

...
Cm = (xn−1 ∨ xn) 0 0 · · · 2 2

α

α
...
α

3
3
...
3

A Very Special Case: 2-SAT

x1 x2 · · · xn−1 xn
x1 2α 0 · · · 0 0
x2 0 2α · · · 0 0
... 0 0
xn 0 0 · · · 0 2α

C1 = (x1 ∨ x2) 2 2 · · · 0 0
C2 = (x1 ∨ xn) 2 0 · · · 0 2

...
Cm = (xn−1 ∨ xn) 0 0 · · · 2 2

α

α
...
α

3
3
...
3

A Very Special Case: 2-SAT

x1 x2 · · · xn−1 xn
x1 2α 0 · · · 0 0
x2 0 2α · · · 0 0
... 0 0
xn 0 0 · · · 0 2α

C1 = (x1 ∨ x2) 2 2 · · · 0 0
C2 = (x1 ∨ xn) 2 0 · · · 0 2

...
Cm = (xn−1 ∨ xn) 0 0 · · · 2 2

α

α
...
α

3
3
...
3

A Very Special Case: 2-SAT. Proof

x1 x2 · · · xn−1 xn
2α 0 · · · 0 0
0 2α · · · 0 0
... 0 0
0 0 · · · 0 2α
2 2 · · · 0 0
2 0 · · · 0 2
...
0 0 · · · 2 2

α

α
...
α

3
3
...
3

α is very large

If x ∈ {0,1}n,
first n lines give
distance nαp

If x ̸∈ {0,1}n,
distance is
≥ (n+ 1)αp

A Very Special Case: 2-SAT. Proof

x1 x2 · · · xn−1 xn
2α 0 · · · 0 0
0 2α · · · 0 0
... 0 0
0 0 · · · 0 2α
2 2 · · · 0 0
2 0 · · · 0 2
...
0 0 · · · 2 2

α

α
...
α

3
3
...
3

α is very large
If x ∈ {0,1}n,
first n lines give
distance nαp

If x ̸∈ {0,1}n,
distance is
≥ (n+ 1)αp

A Very Special Case: 2-SAT. Proof

x1 x2 · · · xn−1 xn
2α 0 · · · 0 0
0 2α · · · 0 0
... 0 0
0 0 · · · 0 2α
2 2 · · · 0 0
2 0 · · · 0 2
...
0 0 · · · 2 2

α

α
...
α

3
3
...
3

α is very large
If x ∈ {0,1}n,
first n lines give
distance nαp

If x ̸∈ {0,1}n,
distance is
≥ (n+ 1)αp

A Very Special Case: 2-SAT. Proof

x1 x2 · · · xn−1 xn
2α 0 · · · 0 0
0 2α · · · 0 0
... 0 0
0 0 · · · 0 2α
2 2 · · · 0 0
2 0 · · · 0 2
...
0 0 · · · 2 2

α

α
...
α

3
3
...
3

x ∈ {0,1}n

sat clause con-
tributes 1 to
the distance

unsat clause
contributes
3p > 1

A Very Special Case: 2-SAT. Proof

x1 x2 · · · xn−1 xn
2α 0 · · · 0 0
0 2α · · · 0 0
... 0 0
0 0 · · · 0 2α
2 2 · · · 0 0
2 0 · · · 0 2
...
0 0 · · · 2 2

α

α
...
α

3
3
...
3

x ∈ {0,1}n

sat clause con-
tributes 1 to
the distance

unsat clause
contributes
3p > 1

A Very Special Case: 2-SAT. Proof

x1 x2 · · · xn−1 xn
2α 0 · · · 0 0
0 2α · · · 0 0
... 0 0
0 0 · · · 0 2α
2 2 · · · 0 0
2 0 · · · 0 2
...
0 0 · · · 2 2

α

α
...
α

3
3
...
3

x ∈ {0,1}n

sat clause con-
tributes 1 to
the distance

unsat clause
contributes
3p > 1

MAX-2-SAT

■ Given an instance of 2-SAT, we construct an
instance of CVPp, s.t.

■ If all clauses are sat —distance is small
■ If not all clauses are sat —distance is large

■ Actually, the reduction gives the number of
satisfiable clauses

■ This is an NP-hard problemMAX-2-SAT

■ Best algorithm for MAX-2-SAT runs in
2ωn/3 < 1.74n

MAX-2-SAT

■ Given an instance of 2-SAT, we construct an
instance of CVPp, s.t.

■ If all clauses are sat —distance is small
■ If not all clauses are sat —distance is large

■ Actually, the reduction gives the number of
satisfiable clauses

■ This is an NP-hard problemMAX-2-SAT

■ Best algorithm for MAX-2-SAT runs in
2ωn/3 < 1.74n

MAX-2-SAT

■ Given an instance of 2-SAT, we construct an
instance of CVPp, s.t.

■ If all clauses are sat —distance is small
■ If not all clauses are sat —distance is large

■ Actually, the reduction gives the number of
satisfiable clauses

■ This is an NP-hard problemMAX-2-SAT

■ Best algorithm for MAX-2-SAT runs in
2ωn/3 < 1.74n

MAX-2-SAT

■ Given an instance of 2-SAT, we construct an
instance of CVPp, s.t.

■ If all clauses are sat —distance is small
■ If not all clauses are sat —distance is large

■ Actually, the reduction gives the number of
satisfiable clauses

■ This is an NP-hard problemMAX-2-SAT

■ Best algorithm for MAX-2-SAT runs in
2ωn/3 < 1.74n

Generalization to k-SAT?

■ For all values of k, we want to reduce k-SAT to
CVPp

■ This would give 1.99n-hardness of CVPp under
SETH

■ A 2-SAT clause is sat iff # of sat literals is 1 or 2

■ 2 and 4 are equidistant from 3!

■ For k-SAT, we can’t find k numbers which are
equidistant from some other number...

Generalization to k-SAT?

■ For all values of k, we want to reduce k-SAT to
CVPp

■ This would give 1.99n-hardness of CVPp under
SETH

■ A 2-SAT clause is sat iff # of sat literals is 1 or 2

■ 2 and 4 are equidistant from 3!

■ For k-SAT, we can’t find k numbers which are
equidistant from some other number...

Generalization to k-SAT?

■ For all values of k, we want to reduce k-SAT to
CVPp

■ This would give 1.99n-hardness of CVPp under
SETH

■ A 2-SAT clause is sat iff # of sat literals is 1 or 2

■ 2 and 4 are equidistant from 3!

■ For k-SAT, we can’t find k numbers which are
equidistant from some other number...

Generalization to k-SAT?

■ For all values of k, we want to reduce k-SAT to
CVPp

■ This would give 1.99n-hardness of CVPp under
SETH

■ A 2-SAT clause is sat iff # of sat literals is 1 or 2

■ 2 and 4 are equidistant from 3!

■ For k-SAT, we can’t find k numbers which are
equidistant from some other number...

Generalization to k-SAT?

■ For all values of k, we want to reduce k-SAT to
CVPp

■ This would give 1.99n-hardness of CVPp under
SETH

■ A 2-SAT clause is sat iff # of sat literals is 1 or 2

■ 2 and 4 are equidistant from 3!

■ For k-SAT, we can’t find k numbers which are
equidistant from some other number...

Generalization to k-SAT!

■ We can find k vectors which are equidistant
from some other vector!

■ Goal: Find k vectors V = (v⃗1, . . . , v⃗k) ∈ Rm×k

and t⃗ ∈ Rm, s.t.
■ for all non-zero y⃗ ∈ {0,1}k, ∥Vy⃗− t⃗∥p = 1
■ for y⃗ = 0k, ∥Vy⃗− t⃗∥p = ∥⃗t∥p > 1

0 v1

v2 v1 + v2

t∗

Generalization to k-SAT!

■ We can find k vectors which are equidistant
from some other vector!

■ Goal: Find k vectors V = (v⃗1, . . . , v⃗k) ∈ Rm×k

and t⃗ ∈ Rm, s.t.
■ for all non-zero y⃗ ∈ {0,1}k, ∥Vy⃗− t⃗∥p = 1
■ for y⃗ = 0k, ∥Vy⃗− t⃗∥p = ∥⃗t∥p > 1

0 v1

v2 v1 + v2

t∗

Generalization to k-SAT!

■ We can find k vectors which are equidistant
from some other vector!

■ Goal: Find k vectors V = (v⃗1, . . . , v⃗k) ∈ Rm×k

and t⃗ ∈ Rm, s.t.
■ for all non-zero y⃗ ∈ {0,1}k, ∥Vy⃗− t⃗∥p = 1
■ for y⃗ = 0k, ∥Vy⃗− t⃗∥p = ∥⃗t∥p > 1

0 v1

v2 v1 + v2

t∗

Isolating Parallelepipeds

Isolating Parallelepipeds

Definition (Isolating Parallelepiped)

k vectors V = (v⃗1, . . . , v⃗k) ∈ Rm×k and t⃗ ∈ Rm

■ for all non-zero y⃗ ∈ {0,1}k, ∥Vy⃗− t⃗∥p = 1

■ for y⃗ = 0k, ∥Vy⃗− t⃗∥p = ∥⃗t∥p > 1

(0, 0)

(1, 1)

(2, 2)

(k, k)

t∗

· · ·

Isolating Parallelepipeds in ℓ1

Definition (Isolating Parallelepiped)

k vectors V = (v⃗1, . . . , v⃗k) ∈ Rm×k and t⃗ ∈ Rm

■ for all non-zero y⃗ ∈ {0,1}k, ∥Vy⃗− t⃗∥p = 1

■ for y⃗ = 0k, ∥Vy⃗− t⃗∥p = ∥⃗t∥p > 1

(0, 0)

(1, 1)

(2, 2)

(k, k)

t∗

· · ·

Isolating Parallelepipeds in ℓ2

0 v1

v2 v1 + v2

t∗

Can we do for 3 vectors? No!

Isolating Parallelepipeds in ℓ2

0 v1

v2 v1 + v2

t∗

Can we do for 3 vectors?

No!

Isolating Parallelepipeds in ℓ2

0 v1

v2 v1 + v2

t∗

Can we do for 3 vectors? No!

Isolating Parallelepipeds

■ If p is an odd integer, then IPs always exist

■ If p is an even integer, then IPs exist only for
at most k ≤ p vectors

■ For any k and any p = p0 + δ(n)with δ(n) ̸= 0
and δ(n) → 0, they exist for sufficiently large n

■ For any fixed k, IPs exist for all but finitely
many values of p

Isolating Parallelepipeds

■ If p is an odd integer, then IPs always exist

■ If p is an even integer, then IPs exist only for
at most k ≤ p vectors

■ For any k and any p = p0 + δ(n)with δ(n) ̸= 0
and δ(n) → 0, they exist for sufficiently large n

■ For any fixed k, IPs exist for all but finitely
many values of p

Isolating Parallelepipeds

■ If p is an odd integer, then IPs always exist

■ If p is an even integer, then IPs exist only for
at most k ≤ p vectors

■ For any k and any p = p0 + δ(n)with δ(n) ̸= 0
and δ(n) → 0, they exist for sufficiently large n

■ For any fixed k, IPs exist for all but finitely
many values of p

Isolating Parallelepipeds

■ If p is an odd integer, then IPs always exist

■ If p is an even integer, then IPs exist only for
at most k ≤ p vectors

■ For any k and any p = p0 + δ(n)with δ(n) ̸= 0
and δ(n) → 0, they exist for sufficiently large n

■ For any fixed k, IPs exist for all but finitely
many values of p

Candidate for odd p

V :=

α3×
α2×
α2×
α2×
α1×
α1×
α1×
α0×

1 1 1
1 1 −1
1 −1 1

−1 1 1
1 −1 −1

−1 1 −1
−1 −1 1
−1 −1 −1

, t⃗ :=

t
t
t
t
t
t
t
t

.

Candidate for odd p

V :=

α3×
α2×
α2×
α2×
α1×
α1×
α1×
α0×

1 1 1
1 1 −1
1 −1 1

−1 1 1
1 −1 −1

−1 1 −1
−1 −1 1
−1 −1 −1

, t⃗ :=

t
t
t
t
t
t
t
t

.

Constraints for odd p

■ This gives a system of k linear equations on
α1, . . . , αk

■ But we need a solution with all α’s
non-negative

■ M ∈ R(t)k×k, α = (α1, . . . , αk) ∈ Rk :

M · α =

1+ ε

1
...
1

Constraints for odd p

■ This gives a system of k linear equations on
α1, . . . , αk

■ But we need a solution with all α’s
non-negative

■ M ∈ R(t)k×k, α = (α1, . . . , αk) ∈ Rk :

M · α =

1+ ε

1
...
1

Constraints for odd p

■ This gives a system of k linear equations on
α1, . . . , αk

■ But we need a solution with all α’s
non-negative

■ M ∈ R(t)k×k, α = (α1, . . . , αk) ∈ Rk :

M · α =

1+ ε

1
...
1

Odd p. Proof

■ M is stochastic with a positive eigenvalue, so it
suffices to showM is invertible:

■ Let α′ = M−1 · e1
■ α = δ1 · α′ + δ2 · 1k
■ M · α = (1+ ε,1, · · · ,1)T

■ det(M) is a piecewise combination of
polynomials of degree (k+ 1)p

■ We show that at least one of these
polynomials is non-zero

Odd p. Proof

■ M is stochastic with a positive eigenvalue, so it
suffices to showM is invertible:

■ Let α′ = M−1 · e1

■ α = δ1 · α′ + δ2 · 1k
■ M · α = (1+ ε,1, · · · ,1)T

■ det(M) is a piecewise combination of
polynomials of degree (k+ 1)p

■ We show that at least one of these
polynomials is non-zero

Odd p. Proof

■ M is stochastic with a positive eigenvalue, so it
suffices to showM is invertible:

■ Let α′ = M−1 · e1
■ α = δ1 · α′ + δ2 · 1k

■ M · α = (1+ ε,1, · · · ,1)T

■ det(M) is a piecewise combination of
polynomials of degree (k+ 1)p

■ We show that at least one of these
polynomials is non-zero

Odd p. Proof

■ M is stochastic with a positive eigenvalue, so it
suffices to showM is invertible:

■ Let α′ = M−1 · e1
■ α = δ1 · α′ + δ2 · 1k
■ M · α = (1+ ε,1, · · · ,1)T

■ det(M) is a piecewise combination of
polynomials of degree (k+ 1)p

■ We show that at least one of these
polynomials is non-zero

Odd p. Proof

■ M is stochastic with a positive eigenvalue, so it
suffices to showM is invertible:

■ Let α′ = M−1 · e1
■ α = δ1 · α′ + δ2 · 1k
■ M · α = (1+ ε,1, · · · ,1)T

■ det(M) is a piecewise combination of
polynomials of degree (k+ 1)p

■ We show that at least one of these
polynomials is non-zero

Odd p. Proof

■ M is stochastic with a positive eigenvalue, so it
suffices to showM is invertible:

■ Let α′ = M−1 · e1
■ α = δ1 · α′ + δ2 · 1k
■ M · α = (1+ ε,1, · · · ,1)T

■ det(M) is a piecewise combination of
polynomials of degree (k+ 1)p

■ We show that at least one of these
polynomials is non-zero

Conclusions

■ Isolating Parallelepipeds don’t exist for even
p, and exist for almost any other p

■ If SETH holds, no 20.99n-algorithm solves
CVPp for these values of p

■ Other hardness results for lattice problems

■ SVP∞,CVPPp, . . .

■ Even hardness of approximation under
Gap-ETH for all p

Conclusions

■ Isolating Parallelepipeds don’t exist for even
p, and exist for almost any other p

■ If SETH holds, no 20.99n-algorithm solves
CVPp for these values of p

■ Other hardness results for lattice problems

■ SVP∞,CVPPp, . . .

■ Even hardness of approximation under
Gap-ETH for all p

Conclusions

■ Isolating Parallelepipeds don’t exist for even
p, and exist for almost any other p

■ If SETH holds, no 20.99n-algorithm solves
CVPp for these values of p

■ Other hardness results for lattice problems

■ SVP∞,CVPPp, . . .

■ Even hardness of approximation under
Gap-ETH for all p

Thank you for your attention!

	The Closest Vector Problem
	Applications
	Hardness
	Isolating Parallelepipeds

