The Complexity of Simple and Optimal Deterministic Mechanisms for an Additive Buyer

Xi Chen, George Matikas,
Dimitris Paparas, Mihalis Yannakakis

The Set-up

Seller has n items for sale

The Set-up

Seller has n items for sale

Buyer has (private) value for each item
\$50
\$25
\$78
\$135
\$53

Probability distribution of value for each item, known to seller
F_{1}
F_{2}
F_{3}
F_{4}
F_{5}

Valuation of buyer drawn randomly from $F=F_{1} \times F_{2} \times \ldots \times F_{n}$

The Set-up

Seller has n items for sale

Buyer has (private) value for each item

$$
\begin{array}{lllll}
\$ 50 & \$ 25 & \$ 78 & \$ 135 & \$ 53
\end{array}
$$

Additive buyer:
Value of a subset S of items = sum of values of items in S

The Set-up

- Seller can assign a price to each subset

or offers a menu of only some subsets (bundles)
- Buyer's Utility for a subset S: u(S) = value(S) - price(S)
- Buyer buys subset S with maximum utility, if ≥ 0
(break ties say by highest value rule)

Optimal Pricing Problem

- Optimal Pricing (Revenue Maximization) Problem

Find pricing that maximizes the expected revenue

$$
\max E[\text { Revenue }]=\sum_{v \sim F} \operatorname{Pr}(v) \cdot \operatorname{price}\left(S_{v}\right)
$$

where $S_{v}=$ bundle bought by buyer with valuation v

Single Item Pricing Scheme

- Set a price for each item

Price for each subset $S: \sum\{$ price $(i) \mid i \in S\}$

- Optimal price for each item i :
value p_{i}^{*} that maximizes $p_{i}^{*} \cdot \operatorname{Pr}\left[\operatorname{value}(i) \geq p_{i}^{*}\right]$
[Myerson ‘81]

Grand Bundle Pricing Scheme

- Can only buy the set of all items (the "grand bundle") for a given price, or nothing at all.
- There are examples where it gets more revenue than single item pricing:

2 iid items with values $\{1,2\}$ with probability $1 / 2$ each

- Single item pricing: opt revenue 2 (eg. price 1 for each)
- Grand bundle pricing: opt revenue 9/4 price 3 for the grand bundle

Partition Pricing Scheme

- Partition the items into groups and assign price to each group in partition.

: \$85

- Can buy any set of groups for sum of their prices
- Includes single item and grand bundle pricing as special cases
- Can get more revenue than both in some examples

Randomized Schemes (Lottery Pricing)

- Lottery $=$ vector $\left(q_{1}, \ldots, q_{n}\right)$ of probabilities for the items If buyer buys the lottery then she gets each item i with probability q_{i}
- Lottery pricing: Menu = set of (lottery, price) pairs.

- Buyer buys lottery with maximum expected utility
- There are examples where lottery pricing gives more revenue than the optimal deterministic pricing

Pricing schemes \leftrightarrow Mechanism design

- Buyer submits a bid for each item
- Mechanism determines allocation the buyer receives and the price she pays
Mechanism must be incentive compatible and individually rational
- Bundle pricings \leftrightarrow deterministic mechanisms
- Lottery pricings \leftrightarrow randomized mechanisms

Past Work

- Lots of work both in economic theory and in computer science
- 1 item: well-understood (also for many buyers) Myerson'81; randomization does not help
- 2 items: much more complicated; randomization can help

Work on

- Simple pricing schemes and their power/limitations
- Approximation of revenue
- Complexity
- Other models, e.g. unit-demand buyers, many buyers, correlated distributions

Past Work: Approximation

- Single item pricing: Θ (logn) approximation to optimal revenue [Hart-Nisan'12, Li-Yao'13]
- Grand bundle: $\mathrm{O}(1)$ approximation for IID distributions [LY13]
- Better of single item/grand bundle: 6-approximation for any (independent) distributions [Babaioff et al'15]
- Approximation schemes for subclasses of distributions [Daskalakis et al '12, Cai-Huang'13]
- Reduction of many buyers to one, and $\mathrm{O}(1)$ approximation [Yao'15]

Past Work: Complexity

- Grand Bundle: Computing the best price for the grand bundle is \#P-hard [Daskalakis et al '12]
- Partition pricing: Computing the best partition and prices is NP-hard. But PTAS for best revenue achievable by any partition mechanism [Rubinstein '16]
- Randomized mechanisms: \#P-hard to compute the optimal solution/revenue [Daskalakis et al '14]

Questions

- Is there an efficient algorithm that finds an optimal (deterministic) pricing?
- Is there such an algorithm when the instance has a "simple" optimal pricing?
- Is there a simple (i.e. easy to check) characterization of when single item pricing is optimal?
- For grand bundle pricing?

Results

- The optimal deterministic pricing problem is \#P-hard, even if all distributions have support 2, and if the optimal is guaranteed to have a very simple form (we call it "discounted item pricing"): single item prices \& price for grand bundle.
Buyer can buy any subset for sum of its item prices or the grand bundle at its price
- Also \#P-hard to compute the optimal revenue.
- It is \#P-hard to determine for a given instance
- if single item pricing is optimal,
- if grand bundle pricing is optimal

Results

- For IID distributions of support 2, the optimal revenue (even among randomized solutions) can be achieved by a discounted item pricing (i.e., single item prices \& price for grand bundle), and it can be computed in polynomial time.
- For constant number of items (and any independent distributions), the problem can be also solved in polynomial time.

Integer Linear Program

- Let $D_{i}=$ support of F_{i} and $D=D_{1} \times \ldots \times D_{n} \quad$ (exponential size)
- Variables: $x_{v, 1}, \ldots, x_{v, n} \in\{0,1\}, \pi_{v}, \forall v \in D$
- $\left(x_{v, 1}, \ldots, x_{v, n}\right)=$ characteristic vector of bundle bought for valuation v, π_{v} its price

$$
\max \sum_{v \in D} \pi_{v} \cdot \operatorname{Pr}[v]
$$

Subject to

1. $\forall v \in D: x_{v, i} \in\{0,1\}$
2. $\forall v \in D: \sum_{i \in[n]} v_{i} \cdot x_{v, i}-\pi_{v} \geq 0$
3. $\forall w, v \in D: \sum_{i \in[n]} w_{i} \cdot x_{w, i}-\pi_{w} \geq \sum_{i \in[n]} w_{i} \cdot x_{v, i}-\pi_{v}$
(w does not envy the bundle of v)

- The LP $\left(x_{v, i} \in[0,1]\right)$ models the optimal lottery problem

IID with support size 2

- Can assume wlog that support=\{1,b\} with $b>1$ (If support=\{0,b\} then trivial: price all items at b. Otherwise rescale.)
- Let $p=\operatorname{Pr}($ value $=b), 1-p=\operatorname{Pr}($ value $=1)$
- Let $Q_{i}=\binom{n}{i} \cdot p^{i}(1-p)^{n-i}=\operatorname{Pr}(i$ items at value $b)$
- Lemma: There exists an integer $k \in[0: n]$ such that

$$
\begin{aligned}
& \quad(n-i) Q_{i}-(b-1)\left(Q_{i+1}+\ldots+Q_{n}\right) \\
& \text { is }<0 \text { for all } i: 0 \leq i \leq k \text {, and is } \geq 0 \text { for all } i: k \leq i \leq n .
\end{aligned}
$$

- Optimal Pricing S^{*} : Price every item at b, and offer the grand bundle at price $k b+n-k$

Proof Sketch

- Expected revenue of S^{*} is $R^{*}=\sum_{1 \leq i<k} b i \cdot Q_{i}+(k b+n-k) \sum_{k \leq i \leq n} Q_{i}$
- Since IID, the LP for the optimal lottery has a symmetric optimal solution [DW12], and the LP can be simplified to a more compact symmetric LP.
- Variables: $x_{i}, i=1, \ldots, n$: probability of getting a value b item when the valuation has i items at b $y_{i}, i=0, \ldots, n-1$: probability of getting a value 1 item when the valuation has i items at b
$\pi_{i}, i=0, \ldots, n$: price of lottery for a valuation with i items at b

Proof Sketch ctd.

The symmetric LP maximizes $\sum_{i=0}^{n} \pi_{i} \cdot Q_{i}$
Relax the LP by keeping only some of the constraints

1. $0 \leq x_{i} \leq 1$ and $0 \leq y_{i} \leq 1$ for all i
2. $\pi_{0} \leq n y_{0}$ (the utility of the all-1 valuation is ≥ 0)
3. For each $i \in[n]$, the valuation w with $w_{j}=b$ for $j \leq i$ and $w_{j}=1$ for $j>i$ does not envy the lottery of the valuation v with $v_{j}=b$ for $j \leq i-1$ and $w_{j}=1$ for $j>i-1$

$$
b i x_{i}+(n-i) y_{i}-\pi_{i} \geq b(i-1) x_{i-1}+(n-i+b) y_{i-1}-\pi_{i-1}
$$

- Combine the inequalities to upper bound every π_{i} in terms of the x, y variables

Proof Sketch ctd.

$$
\begin{aligned}
& \pi_{0} \leq n y_{0} \\
& \pi_{i} \leq \operatorname{bix}_{i}+(n-i) y_{i}-(b-1)\left(y_{i-1}+y_{i-2}+\ldots+y_{1}+y_{0}\right)
\end{aligned}
$$

Replacing in the objective function every π_{i} by its upper bound
\rightarrow linear form in x_{i}, y_{i} that upper bounds optimal value

- Coefficient of x_{i} is $b i Q_{i}>0 \Rightarrow$ expression maximized if $x_{i}=1$
- Coefficient of y_{i} is $(n-i) Q_{i}-(b-1)\left(Q_{i+1}+\ldots+Q_{n}\right)$, which is <0 if $i<k$, and ≥ 0 if $i \geq k \Rightarrow$ expression maximized if we set $y_{i}=0$ for all $i<k$ and $y_{i}=1$ for all $i \geq k$
- Substituting these values in the expression that upper bounds the objective function gives precisely R^{*}

\#P-Hardness

- Reduction from the following problem, COMP. Input:

1. Set B of integers $0<b_{1} \leq b_{2} \leq \ldots \leq b_{n} \leq 2^{n}$
2. Subset $W \subset[n]$ of size $|W|=n / 2$. Let $w=\sum_{i \in W} b_{i}$
3. Integer t

Question: Is the number of subsets $S \subset[n]$ of size $|S|=n / 2$ such that $\Sigma_{i \in S} b_{i} \geq w$ at least t ?

Construction

- $n+1$ items: n items $\leftrightarrow b_{i}$'s + special item
- First n items: almost iid with support \{1, big\} Item i : value 1 with probability $p=1 / 2(h+1)$, where $h=2^{2 n}$
value $h+1+b_{i} \delta$, where $\delta=1 / 2^{3 n}$, with probability $1-p$
- Item $n+1$: support $\{\sigma, \sigma+\alpha\}$, where $\sigma=1 / p^{n}, \alpha=(n / 2) h+w \delta(\ll \sigma)$ value σ with probability $(\alpha /(\sigma+\alpha))+\varepsilon$ for some $\varepsilon=\varepsilon(\mathrm{t})=0(1 / \sigma)$ value $\sigma+\alpha$ with probability $(\sigma /(\sigma+\alpha))-\varepsilon$ (=almost 1)

Two Candidate Solutions

- Solution 1: Grand bundle at price $n+\sigma=$ sum of low values Equivalently, single item pricing with all prices= low values
- Solution 2: Discounted item pricing where all item prices=high values, and grand bundle price $=\mathrm{n}+\sigma+\alpha$

Theorem: One of these two solutions is the unique optimal solution. \#P-hard to tell which one of the two.
Solution 1 is optimal if the answer to the COMP question is No $\left(\mid\left\{S \subset[n]\right.\right.$ of size $|S|=n / 2$ such that $\left.\left.\sum_{i \in S} b_{i} \geq w\right\} \mid<t\right)$ Solution 2 is optimal if the answer to the COMP question is Yes $\left(\mid\left\{S \subset[n]\right.\right.$ of size $|S|=n / 2$ such that $\left.\left.\Sigma_{i \in S} b_{i} \geq w\right\} \mid \geq t\right)$

Two Candidate Solutions

- Solution 1: Grand bundle at price $n+\sigma=$ sum of low values Equivalently, single item pricing with all prices= low values
- Solution 2: Discounted item pricing where all item prices=high values, and grand bundle price $=\mathrm{n}+\sigma+\alpha$

Theorem: One of these two solutions is the unique optimal solution. \#P-hard to tell which one of the two.

Corollaries:

1. \#P-hard to tell if single item pricing is optimal
2. \#P-hard to tell if grand bundle pricing is optimal

Proof Sketchy Outline

- Integer Linear Program, using the allocation variables $x_{v, i}$ and utility variables u_{v} instead of price variables π_{v}

$$
\left(u_{v}=\sum_{i \in[n]} v_{i} \cdot x_{v, i}-\pi_{v}\right)
$$

- Denote a valuation by (S, σ) (or $(S, \sigma+\alpha)$), for $S \subseteq[n]$ if $S=$ set of first n items that have high value and $\mathrm{n}+1$ th item has value σ (or $\sigma+\alpha$)
- In solution 1, all variables $x_{v, i}=1$

$$
\begin{aligned}
& \text { For } v=(S, \sigma), u_{v}=\sum_{i \in S} h_{i} \\
& \text { For } v=(S, \sigma+\alpha), u_{v}=\alpha+\sum_{i \in S} h_{i}
\end{aligned}
$$

Proof Sketchy Outline ctd.

- In Solution 2:

1. If $v=(S, \sigma+\alpha)$, all $x_{v, i}=1, u_{v}=\sum_{i \in S} h_{i}$
2. If $v=(S, \sigma)$ and $\sum_{i \in S} h_{i} \geq \alpha$ then all $x_{v, i}=1, u_{v}=\sum_{i \in S} h_{i}-\alpha$
3. If $v=(S, \sigma)$ and $\sum_{i \in S} h_{i}<\alpha$ then $x_{v, i}=1$ for all $i \in S$,

$$
x_{v, i}=0 \text { for all } i \notin S \text { and for } i=n+1, \text { and } u_{v}=0
$$

- Every S with $|\mathrm{S}|>\mathrm{n} / 2$ satisfies case 2,
- every S with $|S|<n / 2$ satisfies case 3,
- a set S with $|S|=\mathrm{n} / 2$ satisfies case 2 if $\sum_{i \in S} b_{i} \geq w$ and case 3 otherwise

Proof Sketchy Outline ctd.

- Relaxed ILP - keep only a subset of the envy constraints
- $(S, \sigma+\alpha)$ does not envy $(\varnothing, \sigma+\alpha)$, for all $S \neq \varnothing$
- $(\varnothing, \sigma+\alpha)$ does not envy (S, σ), and vice-versa, for all $S \subseteq[n]$,
- for all $\mathrm{T} \subset \mathrm{S} \subset[\mathrm{n}],(\mathrm{S}, \sigma)$ does not envy (T, σ)
- Long sequence of lemmas shows that the optimal solution to the relaxed ILP must be either solution 1 or solution 2
- For $v=(\varnothing, \sigma+\alpha)$, if $x_{v, n+1}=0$ then it must be Solution 1 , if $X_{v, n+1}=1$ then it must be Solution 2

Constant Number of Items

- \#items =k =constant, support size m for each item
- $\mathrm{V}=$ set of m^{k} possible valuation vectors (polynomial)
- $\mathrm{d}=2^{\mathrm{k}}$ possible bundles (constant)
- Space R_{+}^{d} of possible price vectors p for the bundles partitioned by hyperplanes into cells such that \forall cell $\mathrm{C} \forall$ valuation v buys the same bundle for all $\mathrm{p} \in \mathrm{C}$
- Hyperplanes:

$$
\begin{aligned}
& \forall v \in V \forall j \in[d]: \sum_{l \in B_{j}} v_{l}-p_{j}=0 \\
& \forall v \in V \forall j, j^{\prime} \in[d]: \sum_{l \in B_{j}} v_{l}-p_{j}=\sum_{l \in B_{j^{\prime}}} v_{l}-p_{j^{\prime}} \\
& \forall j, j^{\prime} \in[d]: p_{j}=p_{j^{\prime}}
\end{aligned}
$$

Constant Number of Items

- The supremum revenue for price vectors in C is given by an LP, and is achieved at a vertex of C .
\Rightarrow Optimum overall is achieved at a vertex of the subdivision
- Polynomial number of hyperplanes, constant dimension d \Rightarrow polynomial number of vertices.
- Try them all and pick best.

Conclusions

- Showed that the optimal (deterministic) pricing problem is hard, and this holds even when the optimal solution is very simple : single item pricing + discount for grand bundle
- Can we find a polynomial time approximation scheme, or can we rule it out?
When there is a simple optimal solution?
- IID case?

Is there a PTAS?

