The Complexity of Simple and Optimal Deterministic Mechanisms for an Additive Buyer

Xi Chen, George Matikas, Dimitris Paparas, Mihalis Yannakakis

Seller has n items for sale

Seller has n items for sale

Buyer has (private) value for each item \$50 \$25 \$78 \$135 \$53

Probability distribution of value for each item, known to seller

$$F_1$$
 F_2 F_3 F_4 F_5

Valuation of buyer drawn randomly from $F = F_1 \times F_2 \times ... \times F_n$

Seller has n items for sale

\$53

Buyer has (private) value for each item \$50 \$25 \$78 \$135

Additive buyer:

Value of a subset S of items = sum of values of items in S

• Seller can assign a price to each subset

or offers a menu of only some subsets (bundles)

- Buyer's Utility for a subset S: u(S) = value(S) price(S)
- Buyer buys subset S with maximum utility, if ≥ 0 (break ties say by highest value rule)

Optimal Pricing Problem

Optimal Pricing (Revenue Maximization) Problem
 Find pricing that maximizes the expected revenue

$$\max E[\text{Revenue}] = \sum_{v \sim F} \Pr(v) \cdot \operatorname{price}(S_v)$$

where S_v = bundle bought by buyer with valuation v

Single Item Pricing Scheme

• Set a price for each item

Price for each subset S : $\sum \{ \text{price}(i) \mid i \in S \}$

Optimal price for each item *i* :
 value p^{*}_i that maximizes p^{*}_i · Pr[value(i) ≥ p^{*}_i]
 [Myerson '81]

Grand Bundle Pricing Scheme

- Can only buy the set of all items (the "grand bundle") for a given price, or nothing at all.
- There are examples where it gets more revenue than single item pricing:
 - 2 iid items with values $\{1, 2\}$ with probability $\frac{1}{2}$ each
 - Single item pricing: opt revenue 2 (eg. price 1 for each)
 - Grand bundle pricing: opt revenue 9/4

price 3 for the grand bundle

Partition Pricing Scheme

• Partition the items into groups and assign price to each group in partition.

- Can buy any set of groups for sum of their prices
- Includes single item and grand bundle pricing as special cases
- Can get more revenue than both in some examples

Randomized Schemes (Lottery Pricing)

- Lottery = vector (q₁,...,q_n) of probabilities for the items If buyer buys the lottery then she gets each item i with probability q_i
- Lottery pricing: Menu = set of (lottery, price) pairs.

• Buyer buys lottery with maximum expected utility

• There are examples where lottery pricing gives more revenue than the optimal deterministic pricing

Pricing schemes ↔ Mechanism design

- Buyer submits a bid for each item
- Mechanism determines *allocation* the buyer receives and the *price* she pays Mechanism must be incentive compatible and individually rational
- Bundle pricings \leftrightarrow deterministic mechanisms
- Lottery pricings \leftrightarrow randomized mechanisms

Past Work

- Lots of work both in economic theory and in computer science
- 1 item: well-understood (also for many buyers) Myerson'81; randomization does not help
- 2 items: much more complicated; randomization can help

Work on

- Simple pricing schemes and their power/limitations
- Approximation of revenue
- Complexity
- Other models, e.g. unit-demand buyers, many buyers, correlated distributions

Past Work: Approximation

- Single item pricing: Θ(logn) approximation to optimal revenue [Hart-Nisan'12, Li-Yao'13]
- Grand bundle: O(1) approximation for IID distributions [LY13]
- Better of single item/grand bundle: 6-approximation for any (independent) distributions [Babaioff et al'15]
- Approximation schemes for subclasses of distributions [Daskalakis et al '12, Cai-Huang'13]
- Reduction of many buyers to one, and O(1) approximation [Yao'15]

Past Work: Complexity

- Grand Bundle: Computing the best price for the grand bundle is #P-hard [Daskalakis et al '12]
- Partition pricing: Computing the best partition and prices is NP-hard. But PTAS for best revenue achievable by any partition mechanism [Rubinstein '16]
- Randomized mechanisms: #P-hard to compute the optimal solution/revenue [Daskalakis et al '14]

Questions

- Is there an efficient algorithm that finds an optimal (deterministic) pricing?
- Is there such an algorithm when the instance has a "simple" optimal pricing?
- Is there a simple (i.e. easy to check) characterization of when single item pricing is optimal?
- For grand bundle pricing?

Results

- The optimal deterministic pricing problem is #P-hard, even if all distributions have support 2, and if the optimal is guaranteed to have a very simple form (we call it "discounted item pricing"): single item prices & price for grand bundle. Buyer can buy any subset for sum of its item prices or the grand bundle at its price
 - Also #P-hard to compute the optimal revenue.
- It is #P-hard to determine for a given instance
 - if single item pricing is optimal,
 - if grand bundle pricing is optimal

Results

- For IID distributions of support 2, the optimal revenue (even among randomized solutions) can be achieved by a discounted item pricing (i.e., single item prices & price for grand bundle), and it can be computed in polynomial time.
- For constant number of items (and any independent distributions), the problem can be also solved in polynomial time.

Integer Linear Program

- Let D_i = support of F_i and $D = D_1 \times ... \times D_n$ (exponential size)
- Variables: $x_{v,1}, ..., x_{v,n} \in \{0,1\}, \pi_v, \forall v \in D$
- $(x_{v,1},...,x_{v,n})$ = characteristic vector of bundle bought for valuation v, π_v its price

 $\max \sum_{v \in D} \pi_{v} \cdot \Pr[v]$ Subject to $1. \forall v \in D : x_{v,i} \in \{0,1\}$ $2. \forall v \in D : \sum_{i \in [n]} v_{i} \cdot x_{v,i} - \pi_{v} \ge 0$ $3. \forall w, v \in D : \sum_{i \in [n]} w_{i} \cdot x_{w,i} - \pi_{w} \ge \sum_{i \in [n]} w_{i} \cdot x_{v,i} - \pi_{v}$ (w does not envy the bundle of v)

• The LP ($x_{v,i} \in [0,1]$) models the optimal lottery problem

IID with support size 2

- Can assume wlog that support={1,b} with b>1
 (If support={0,b} then trivial: price all items at b. Otherwise rescale.)
- Let p = Pr(value=b), 1-p = Pr(value=1)

• Let
$$Q_i = {n \choose i} \cdot p^i (1-p)^{n-i} = \Pr(i \text{ items at value } b)$$

- Lemma: There exists an integer k∈[0:n] such that

 (n-i)Q_i (b-1)(Q_{i+1} + ... + Q_n)
 is < 0 for all i : 0 ≤ i ≤ k, and is ≥ 0 for all i : k ≤ i ≤ n.
- Optimal Pricing S*: Price every item at b, and offer the grand bundle at price kb+n-k

Proof Sketch

- Expected revenue of S* is $R^* = \sum_{1 \le i < k} bi \cdot Q_i + (kb + n k) \sum_{k \le i \le n} Q_i$
- Since IID, the LP for the optimal lottery has a symmetric optimal solution [DW12], and the LP can be simplified to a more compact symmetric LP.
- Variables: x_i, i=1,...,n : probability of getting a value b item when the valuation has i items at b

 y_i , i=0,...,n-1: probability of getting a value 1 item when the valuation has *i* items at b

 π_i , $i=0,\ldots,n$: price of lottery for a valuation with *i* items at b

Proof Sketch ctd.

The symmetric LP maximizes $\sum_{i=0}^{n} \pi_i \cdot Q_i$

Relax the LP by keeping only some of the constraints

- 1. $0 \le x_i \le 1$ and $0 \le y_i \le 1$ for all *i*
- 2. $\pi_0 \le ny_0$ (the utility of the all-1 valuation is ≥ 0)
- 3. For each $i \in [n]$, the valuation w with $w_j = b$ for $j \le i$ and $w_j = 1$ for j > i does not envy the lottery of the valuation v with $v_j = b$ for $j \le i-1$ and $w_j = 1$ for j > i-1

 $bix_{i} + (n-i)y_{i} - \pi_{i} \ge b(i-1)x_{i-1} + (n-i+b)y_{i-1} - \pi_{i-1}$

 Combine the inequalities to upper bound every π_i in terms of the *x*, *y* variables

Proof Sketch ctd.

)

$$\pi_0 \le ny_0$$

$$\pi_i \le bix_i + (n-i)y_i - (b-1)(y_{i-1} + y_{i-2} + \dots + y_1 + y_0)$$

Replacing in the objective function every π_i by its upper bound \rightarrow linear form in x_i , y_i that upper bounds optimal value

- Coefficient of x_i is $biQ_i > 0 \implies$ expression maximized if $x_i = 1$
- Coefficient of y_i is (n-i)Q_i (b-1)(Q_{i+1} + ... + Q_n), which is
 < 0 if i <k, and ≥ 0 if i ≥ k ⇒ expression maximized if
 we set y_i = 0 for all i <k and y_i =1 for all i ≥ k
 - Substituting these values in the expression that upper bounds the objective function gives precisely *R**

#P-Hardness

- Reduction from the following problem, COMP. Input:
 - 1. Set B of integers $0 < b_1 \le b_2 \le \ldots \le b_n \le 2^n$
 - 2. Subset W⊂[n] of size |W|=n/2. Let $w=\sum_{i \in W} b_i$
 - 3. Integer t

Question: Is the number of subsets S \subset [n] of size |S|=n/2 such that $\sum_{i \in S} b_i \ge w$ at least t ?

Construction

- n+1 items: n items \leftrightarrow b_i's + special item
- First n items: almost iid with support {1, big}
 Item i: value 1 with probability p=1/2(h+1), where h=2²ⁿ
 value h+1+b_iδ, where δ=1/2³ⁿ, with probability 1-p
- Item n+1: support {σ, σ+α}, where σ=1/pⁿ, α=(n/2)h+wδ (<<σ) value σ with probability (α/(σ+α))+ε for some ε=ε(t)=o(1/σ) value σ+α with probability (σ/(σ+α))-ε (=almost 1)

Two Candidate Solutions

- Solution 1: Grand bundle at price $n+\sigma = sum$ of low values Equivalently, single item pricing with all prices= low values
- Solution 2: Discounted item pricing where all item prices=high values, and grand bundle price = $n + \sigma + \alpha$

Theorem: One of these two solutions is the unique optimal solution. #P-hard to tell which one of the two.

Solution 1 is optimal if the answer to the COMP question is No ($| \{S \subset [n] \text{ of size } |S|=n/2 \text{ such that } \Sigma_{i \in S} b_i \ge w \} | < t)$

Solution 2 is optimal if the answer to the COMP question is Yes ($| \{S \subset [n] \text{ of size } |S|=n/2 \text{ such that } \Sigma_{i \in S} b_i \ge w \} | \ge t$)

Two Candidate Solutions

- Solution 1: Grand bundle at price $n+\sigma = sum$ of low values Equivalently, single item pricing with all prices= low values
- Solution 2: Discounted item pricing where all item prices=high values, and grand bundle price = $n + \sigma + \alpha$

Theorem: One of these two solutions is the unique optimal solution. #P-hard to tell which one of the two.

Corollaries:

- 1. #P-hard to tell if single item pricing is optimal
- 2. #P-hard to tell if grand bundle pricing is optimal

Proof Sketchy Outline

• Integer Linear Program, using the allocation variables $x_{v,i}$ and utility variables u_v instead of price variables π_v

$$(u_v = \sum_{i \in [n]} v_i \cdot x_{v,i} - \pi_v)$$

- Denote a valuation by (S,σ) (or (S,σ+α)), for S⊆[n] if S=set of first n items that have high value and n+1th item has value σ (or σ+α)
- In solution 1, all variables $x_{v,i} = 1$

For
$$v = (S, \sigma)$$
, $u_v = \sum_{i \in S} h_i$
For $v = (S, \sigma + \alpha)$, $u_v = \alpha + \sum_{i \in S} h_i$

Proof Sketchy Outline ctd.

- In Solution 2:
 - 1. If $v = (S, \sigma + \alpha)$, all $x_{v,i} = 1, u_v = \sum_{i=1}^{n} h_i$
 - 2. If $v = (S, \sigma)$ and $\sum_{i \in S} h_i \ge \alpha$ then all $x_{v,i} = 1$, $u_v = \sum_{i \in S} h_i \alpha$
 - 3. If $v = (S, \sigma)$ and $\sum_{i \in S} h_i < \alpha$ then $x_{v,i} = 1$ for all $i \in S$,

 $x_{v,i} = 0$ for all $i \notin S$ and for i = n + 1, and $u_v = 0$

- Every S with |S| > n/2 satisfies case 2,
- every S with |S| < n/2 satisfies case 3,
- a set S with |S| = n/2 satisfies case 2 if $\sum_{i \in S} b_i \ge w$ and case 3 otherwise

Proof Sketchy Outline ctd.

- Relaxed ILP keep only a subset of the envy constraints
 - (S, σ + α) does not envy (\emptyset , σ + α), for all S $\neq \emptyset$
 - $(\emptyset, \sigma + \alpha)$ does not envy (S, σ) , and vice-versa, for all $S \subseteq [n]$,
 - for all T \subset S \subset [n], (S, σ) does not envy (T, σ)

• Long sequence of lemmas shows that the optimal solution to the relaxed ILP must be either solution 1 or solution 2

- For v=($\emptyset,\sigma+\alpha$), if $x_{v,n+1} = 0$ then it must be Solution 1,

if $x_{v,n+1} = 1$ then it must be Solution 2

Constant Number of Items

- #items =k =constant, support size m for each item
- V = set of m^k possible valuation vectors (polynomial)
- d=2^k possible bundles (constant)
- Space R^d₊ of possible price vectors p for the bundles partitioned by hyperplanes into cells such that ∀cell C ∀ valuation v buys the same bundle for all p∈C
- Hyperplanes:

$$\forall v \in V \ \forall j \in [d] : \sum_{l \in B_j} v_l - p_j = 0$$

$$\forall v \in V \ \forall j, j' \in [d] : \sum_{l \in B_j} v_l - p_j = \sum_{l \in B_{j'}} v_l - p_j$$

$$\forall i, i' \in [d] : p_i = p_i$$

 $\forall j, j' \in [d]: p_j = p_{j'}$

Constant Number of Items

- The supremum revenue for price vectors in C is given by an LP, and is achieved at a vertex of C.
- \Rightarrow Optimum overall is achieved at a vertex of the subdivision
- Polynomial number of hyperplanes, constant dimension d
 ⇒ polynomial number of vertices.
- Try them all and pick best.

Conclusions

- Showed that the optimal (deterministic) pricing problem is hard, and this holds even when the optimal solution is very simple : single item pricing + discount for grand bundle
- Can we find a polynomial time approximation scheme, or can we rule it out?
 When there is a simple optimal solution?
- IID case?

Is there a PTAS?