
A Report on the BPrologCSP Solver

Neng-Fa Zhou

CUNY Brooklyn College

This note attempts to give a quick analysis of the results of the BPro-
logCSP solver in the second international solver competition. The con-
straint propagators used in the solver are implemented in AR (action
rules), a language available in B-Prolog, and the search part is imple-
mented using labeling mix, a built-in in B-Prolog, that allows for the
use of mixed strategies and time limits in labeling variables. The reader
is referred to the papers on AR [2, 4] for the implementation of the prop-
agators and the B-Prolog users’ manual for the use of labeling mix.

The results of the BPrologCSP solver are mixed: One the one hand,
it was unexpectedly ranked top in two of the categories (global and
n-ary intentional), and on the other hand, it was placed only 13th
in the binary intentional category. The propagators from last year’s
solver [3] were used for extensionally defined constraints. Since the
procedures on tables were implemented in Prolog, the poor performance
on extensionally defined constraints was expected.

B-Prolog’s finite-domain solver has the reputation for high perfor-
mance. As described in [2], the high performance is partially attributed
to the efficient event-handling architecture. This high performance is
normally revealed on not only n-ary constraints but also binary con-
straints. The implementation of the all different constraint is based
on a weak version of the hall-set finding algorithm [4], which is weaker
in terms of prunning power than Regin’s filtering algorithm [1]. It is
unclear if Regin’s algorithm is used in any other participating solvers.
If so, it would be worthwhile to investigate why the BPrologCSP solver
outperformed them.

The BPrologCSP solver was disappointedly ranked only 13th among
16 participating solvers in the binary intentional category. The follow-
ing table shows the instances that the BPrologCSP solver failed to solve
within the time limit:

Problem class # failed instances
fapp 245

taillard 148
haystack 48

rlfap 30
queensKnight 18

knights 15
pigeons 12
os-qp 10

A closer look reveals the reason: Almost all of the failed instances
contain non-linear (e.g., X ∗Y = C, abs(X −Y ) = C, and X mod Y =
C) and disjunctive constraints which were not efficiently implemented
in the submitted version of the solver.

1



Future improvements include: (1) refining the propagators for non-
linear and disjunctive constraints; (2) introducing certain constraint
reasoning ability to the solver; (3) and tuning the labeling strategies.

Acknowledgement

The competition would be impossible without the huge amount of time
and energy put into it by the organizers. So thanks go to the organizers.
Special thanks go to Olivier Roussel for obtaining all the results and
feedbacks.

References

[1] J.C. Regin. A filtering algorithm for constraints of difference in
CSPs. In Proceedings of the National Conference on Artificial
Intelligence(AAAI-94), pages 362–367. AAAI Press, 1994.

[2] Neng-Fa Zhou. Programming finite-domain constraint propagators
in action rules. Theory and Practice of Logic Programming (TPLP),
6(5):483–508, 2006.

[3] Neng-Fa Zhou and Mark Wallace. A simple constraint solver in
action rules for the cp’05 solver competition. In Proceedings of the
CP workshop on Constraint Propagation and Implementation, page
6 pages, 2005.

[4] Neng-Fa Zhou, Mark Wallace, and Peter J. Stuckey. The dom event
and its use in implementing constraint propagators. Technical re-
port TR-2006013, CUNY Compute Science, 2006.

2


