
B-Prolog: An Overview
www.bprolog.com

B-Prolog is a high-performance, high-quality, and award-wining implementation of the stan-
dard Prolog language with several useful extended features including action rules for event
handling, finite-domain constraint solving, and tabling. First released in 1994, B-Prolog has
become one of the most innovative and widely used CLP systems. Whether it comes to stan-
dard Prolog programs, or finite-domain constraint programs, or tabled programs, B-Prolog is
proud to be a front runner. The constraint solver of B-Prolog was ranked top in two important
categories in the Second International Solvers Competition1. B-Prolog is being used by numer-
ous application projects ranging from (natural) language processing, business logic, CAD, data
analysis, machine learning, to optimizations systems. B-Prolog underpins the PRISM system2,
a popular logic-based probabilistic reasoning and learning system.

A Fast Prolog Engine

The latest version of B-Prolog, version 7.0, adopts a new virtual machine, named TOAM Jr. [3],
which is a successor of TOAM [1]. TOAM Jr., unlike the Warren Abstract Machine, is a pure
stack machine that is suited for software emulation. The new design boosts the speed by over
50%, thanks mainly to reduction of the cost of parameter passing and bytecode interpretation,
making B-Prolog one of the fastest Prolog engines.

As the name TOAM (short for Tree-Oriented Abstract Machine) entails, indexing has been a
priority in B-Prolog since the very first version. For programs that consist of matching clauses
in which input/output unifications are separated and programs with mode information, the
compiler generates matching trees that index the clauses on all input arguments and inline
tests. Because a linear-time algorithm is used that generates linear-size code, the compiler can
compile even large programs in a short time. In fact, the entire B-Prolog library, which has
over 23,000 lines of Prolog code, can be compiled in just one second on a PC.

Action Rules for Programming Agents

The lack of a facility for programming “active” sub-goals that can be reactive to the envi-
ronment has been considered one of the weaknesses of logic programming. To overcome this,
B-Prolog provides a simple and yet powerful language, called Action Rules (AR), for pro-
gramming agents. An agent is a subgoal that can be delayed and can later be activated by
events. Each time an agent is activated, some actions may be executed. Agents are a more
general notion than delay constructs in early Prolog systems and processes in concurrent logic
programming languages in the sense that agents can be responsive to various kinds of events
including instantiation, domain, time, and user-defined events.

A Fast CLP(FD) System

B-Prolog initially had a finite-domain constraint solver implemented in version 2.1, which was
released in March 1997. That solver was implemented in an early version of AR. During the
past decade, AR has been extended to support a rich class of domain events for programming
constraint propagators [5] and the system has been artfully engineered to make constraint
solving fast. As testified by the results in the solvers competition, B-Prolog is arguably one of
the fastest CLP(FD) systems.

1http://www.cril.univ-artois.fr/CPAI06
2http://sato-www.cs.titech.ac.jp/prism/

1



An Efficient Tabling System

Tabling has been found increasingly important for not only helping beginners write work-
able declarative programs but also developing real-world applications such as natural language
processing, databases, model checking, and machine learning applications. B-Prolog imple-
ments a tabling mechanism, called linear tabling [4], which is based on iterative computation
of looping subgoals rather than suspension of them to compute the fixed points. Optimiza-
tion techniques have been developed to significantly reduce the cost of re-computation and the
tabling system in B-Prolog is now competitive in both space and time efficiencies. As demon-
strated by PRISM applications, the tabling system in B-Prolog is sustainable to large data
sets.

User-friendly Memory Management

The B-Prolog system has an efficient garbage collector (GC) that reclaims space used by garbage
on the control stack and the heap. It also compacts the trail stack to get rid of redundantly
trailed items. GC is invoked automatically when needed and the user can control the frequency
of GC by setting the gc threshold flag or by invoking GC explicitly. The memory manager
employs techniques to reuse space in the program and table areas. All the stacks and data areas
expand automatically before they overflow, so applications can run with any initial setting for
the spaces as long as the overall demand for memory can be met.

Wide Accessibility

B-Prolog runs on Windows, Linux, Mac, and Solaris. It also runs on 64-bit platforms, so large
applications can have access to an almost unlimited large memory space. The system provides
a bi-directional interface with C and Java (JIPL by Nobukuni Kino). It provides a classical
debugging environment and several useful tools including a profiler and an XML parser (by
Binding Time Limited). Last but not least, B-Prolog supports a declarative and easy-to-use
interface to GLPK (by Andrew Makhorin) through which LP/MIP problems can be described
declaratively in Prolog syntax.

References

[1] Neng-Fa Zhou. Parameter passing and control stack management in Prolog implementa-
tion revisited. ACM Transactions on Programming Languages and Systems, 18(6):752–779,
1996.

[2] Neng-Fa Zhou. Programming finite-domain constraint propagators in action rules. Theory
and Practice of Logic Programming (TPLP), 6(5):483–508, 2006.

[3] Neng-Fa Zhou. A register-free abstract Prolog machine with jumbo instructions. In Inter-
national Conference on Logic Programming, 2007.

[4] Neng-Fa Zhou, Taisuke Sato, and Yi-Dong Shen. Linear tabling strategies and optimiza-
tions. Theory and Practice of Logic Programming (TPLP), to appear, preliminary results
appear in ACM PPDP’03 and ACM PPDP’04., 2007.

[5] Neng-Fa Zhou, Mark Wallace, and Peter J. Stuckey. The dom event and its use in imple-
menting constraint propagators. Technical report TR-2006013, CUNY Compute Science,
2006.

2


